Forças Armadas na Célula Mantêm o DNA Saudável

Por David Coppedge | Evolution News
4 de outubro de 2022, 17h13

Repórteres científicos lutam por metáforas para descrever as operações complexas que eles veem acontecendo na célula. Por exemplo:

▪️ A Orquestra

Notícias da Universidade de Genebra comparam o genoma humano a uma “orquestra complexa”. Sua pesquisa levou a descobertas “inesperadas” e “surpreendentes” mostrando “comportamento harmonizado e sinérgico” na regulação dos genes. A metáfora de um maestro mantendo todos os vários jogadores em harmonia veio à mente:

Uma equipe de geneticistas suíços da Universidade de Genebra (UNIGE), da École Polytechnique Fédérale de Lausanne (EPFL) e da Universidade de Lausanne (UNIL) descobriu que a variação genética tem o potencial de afetar o estado do genoma em muitas posições aparentemente separadas e, assim, modular a atividade do gene, muito parecido com um maestro orientando os intérpretes de um conjunto musical para tocar com harmonia.

Esses resultados inesperados, publicados na Cell, revelam a versatilidade da regulação do genoma e oferecem insights sobre a forma como ela é orquestrada. [Enfase adicionada.]

▪️ As forças armadas

Outra metáfora popular entre os repórteres é “forças armadas”. Essa metáfora será instrutiva à medida que lemos sobre proteção do DNA e reparo de danos. Vejamos algumas das etapas desse processo onde encontraremos soldados, técnicos de emergência médica, ambulâncias e hospitais militares em ação, todos bem treinados e equipados para a defesa.

▪️ Vigilância e Inspeção

Qualquer operação militar disciplinada requer altos padrões.

Soldados no campo de treinamento sabem que os sargentos podem ser implacáveis ao inspecionar rifles, engraxates e camas de quartel.

Da mesma forma, as máquinas do genoma inspecionam o DNA em busca de erros e não toleram menos do que a perfeição.

Um artigo da Universidade Estadual da Carolina do Norte descreve a MutS, uma máquina que inspeciona fitas de DNA descompactadas em busca de erros.

Qualquer desencontro faz com que esse sargento pare e encare o recruta, mesmo que ele seja um em um milhão.

Felizmente, nossos corpos têm um sistema para detectar e reparar essas incompatibilidades – um par de proteínas conhecidas como MutS e MutL.

A MutS desliza ao longo do lado recém-criado da fita de DNA depois de replicada, revisando-a. Quando encontra uma incompatibilidade, ele se encaixa no local do erro e recruta a MutL para se juntar a ela.

A MutL faz um corte na fita de DNA recém-sintetizada para marcá-la como defeituosa e sinaliza uma proteína diferente para devorar a porção do DNA que contém o erro.

Em seguida, a correspondência de nucleotídeos recomeça, preenchendo a lacuna novamente. Todo o processo reduz os erros de replicação em cerca de mil vezes, servindo como melhor defesa contra mutações genéticas e os problemas que podem surgir delas, como o câncer.

▪️ Primeira resposta

Se ocorrerem vítimas, elas devem ser detectadas. Uma proteína chamada ATF3 é a capitã de um esquadrão que atua como “primeiro respondedor” a danos no DNA, como explica a Georgia Regents University.

Digamos que uma fita de DNA se rompa por causa da luz solar, quimioterapia ou um raio cósmico.

Se não for corrigida rapidamente, a célula pode se tornar cancerosa ou morrer. O que acontece primeiro?

No cenário rápido e complexo que permite que uma célula repare danos no DNA ou morra, a ATF3, ou Ativador do Fator de Transcrição 3, parece ser um verdadeiro primeiro respondedor, aumentando seus níveis e depois encontrando e se ligando a outra proteína, Tip60, o que acabará por ajudar atrair um enxame de outras proteínas para o local do dano.

▪️ Operações de Combate

Os vírus invadiram! As forças armadas entram em alerta máximo. O Salk Institute for Biological Studies descreve a enxurrada de atividades resultantes, porque todo organismo “deve proteger seu DNA a todo custo”.

Antes de entrar em pânico, os comandantes da célula precisam de inteligência. Se uma quebra de DNA coloca a célula em estresse, seja uma quebra natural, digamos de um raio cósmico, ou de um vírus, como um insurgente jogando uma granada? Um movimento em falso pode levar a baixas de fogo amigo.

Os pesquisadores explicam como a célula descobre se o dano ao DNA foi interno ou externo. Primeiro, o complexo MRN dá o sinal de “todas as mãos no convés”. Ele interrompe a replicação e outras operações da célula até que a quebra seja corrigida.

O interessante é que mesmo uma única interrupção transmite um sinal global através da célula, interrompendo a divisão e o crescimento celular”, diz O’Shea.

“Essa resposta impede a replicação para que a célula não passe por uma pausa .”

A resposta viral começa da mesma forma, mas não dá o alarme global.

Em vez disso, o alarme é localizado e sentinelas na área despacham os invasores. Há uma razão para isso.

“Se todos os vírus que chegam estimulassem uma resposta igualmente forte, aponta O’Shea, nossas células seriam pausadas com frequência, prejudicando nosso crescimento”. Mas quando a célula fica preocupada com o reparo de danos no DNA, os vírus podem se infiltrar.

Um vídeo no artigo aplica a metáfora das forças armadas:

Govind Shah: “As proteínas de reparo do DNA servem como guardas de segurança dentro do núcleo. Eles pegam o DNA do vírus e os escoltam para fora da célula.

Se uma célula sofrer uma grande quantidade de danos no DNA, esses guardas de segurança serão afastados do DNA viral e permitirão que o DNA viral se replique em altos níveis”.

Clodagh O’Shea: “Descobrimos que se você tem danos no DNA em seu próprio genoma, e o alarme dispara, na verdade isso recruta todas as forças: toda a polícia, guarda nacional – todo mundo está lá. Todas as forças estão lidando com seu próprio dano ao DNA, e não há mais nada para realmente ver ou desligar o vírus.”

Isso lhes deu uma ideia. Shah diz: “Então, por que não usar isso para matar células cancerígenas” com vírus projetados para entrar nas células tumorais? A resposta programada que eles descobriram fará com que a célula deixe os vírus entrarem enquanto está preocupada em consertar quebras de DNA.

“Se a célula não puder consertar a quebra do DNA, ela induzirá a morte celular – um mecanismo de autodestruição que ajuda a impedir que as células mutantes se repliquem (e, portanto, impede o crescimento do tumor)”.

▪️ Médicos

Estamos todos familiarizados com as imagens de helicópteros no campo de batalha entregando médicos para dar primeiros socorros aos feridos, ou transportando-os de avião para a estação de triagem ou hospital mais próximo. O núcleo da célula tem hospitais, diz um artigo da Biotechniques, e “ Uma ambulância molecular para DNA ” sabe como levar as vítimas ao pronto-socorro.

As quebras de fita dupla no DNA são uma fonte de estresse e às vezes a morte das células.

Mas as quebras podem ser corrigidas se encontrarem uma maneira de reparar os locais dentro da célula.

Em leveduras, um dos principais sítios de reparo reside no envelope nuclear, onde um conjunto de proteínas, incluindo o sub-complexo de poros nucleares Nup84, serve como uma espécie de hospital molecular.

O complexo de proteína motora cinesina-14, uma “ambulância de DNA”, move as pausas para locais de reparo, de acordo com um novo estudo da Nature Communications.

Pesquisadores da Universidade de Toronto acharam “muito surpreendente” que o motorista da ambulância seja a conhecida proteína motora cinesina-14 (veja nossa animação da cinesina em ação abaixo [áudio original em inglês]).

▪️ Funcionários do Hospital

Notícias do MD Anderson Cancer Center da Universidade do Texas apresentam alguns dos especialistas do hospital de reparo de DNA: fumarase, uma enzima metabólica; DNA-PK, uma proteína quinase; e enzimas de metilação de histonas que regulam o processo de reparo.

Esses médicos qualificados realizam cirurgias restauradoras para “quebras de fita dupla de DNA (DSBs)”, que “são a pior forma possível de mau funcionamento genético que pode causar câncer e resistência à terapia”.

▪️ Equipe de limpeza

As células investem muita energia em seus ribossomos, as organelas que traduzem o DNA. Os ribossomos são montados a partir de domínios de proteína e RNA. O que acontece com as sobras? Um item da Universidade de Heidelberg descreve máquinas moleculares que codificam os fragmentos em código de barras para serem entregues a um triturador em forma de barril chamado exossomo.

Embora não sejam descritos em termos militares, os agentes estão sob ordens estritas e obrigados a passar por postos de controle.

De acordo com o Prof. Hurt, a produção de ribossomos é um processo extremamente complexo que segue um esquema rígido com vários pontos de controle de qualidade .

As fábricas de proteínas são feitas de inúmeras proteínas ribossômicas (r-proteínas) e ácido ribonucleico ribossômico (rRNA).

Mais de 200 proteínas auxiliares, conhecidas como fatores de biogênese do ribossomo, são necessárias nas células eucarióticas para montar corretamente as proteínas-r e os diferentes rRNAs. Três do total de quatro rRNAs diferentes são fabricados a partir de um grande RNA precursor. Eles precisam ser “aparados” em pontos específicos durante o processo de fabricação, e as peças supérfluas são descartadas.

“Como esses processos são irreversíveis , é necessária uma verificação especial ”, explica Ed Hurt.

O número de pessoas das “forças armadas” envolvidas na defesa do DNA e no controle de qualidade das células é surpreendente. Está além de uma orquestra bem conduzida. É como uma operação militar, com protocolos rígidos, estrutura de comando hierárquica e especialistas treinados. Esses sistemas são orientados a objetivos: eles existem para proteger o genoma. Eles estão de plantão inspecionando componentes mesmo quando nada está errado. E quando as coisas dão errado, eles sabem exatamente o que fazer, como se estivessem bem treinados em seguir ordens.

Não estamos surpresos ao notar que esses artigos não dizem nada sobre evolução. Por quê? Porque todos sabemos pela nossa experiência que os fenómenos caracterizados por sistemas de comando e controle hierárquicos com procedimentos documentados e agentes qualificados são sempre concebidos de forma inteligente.

Este artigo foi publicado originalmente em 2015.

A Deusa de Darwin: Seleção Natural Como “Substituto Divino”

Neil Thomas | Evolution News

Mais Sobre Máquinas Auto-Replicantes

Granville Sewell | Evolution News

27 de junho de 2022, 12hs39min

Em um post no início deste mês, descrevi Three Realities Chance Can’t Explain That Intelligent Design Can.

O post mostrou alguns dos problemas com explicações materialistas sobre como as quatro forças fundamentais e não inteligentes da física sozinhas poderiam ter reorganizado as partículas fundamentais da física na Terra em computadores, textos científicos e telefones inteligentes. Fiz uma comparação com máquinas auto-replicantes:

[Eu]imagino que de alguma forma conseguimos projetar, digamos, uma frota de carros com fábricas de construção de automóveis totalmente automatizadas, capazes de produzir carros novos – e não apenas carros novos normais, mas carros novos com fábricas de construção de automóveis totalmente automatizadas dentro deles. Quem poderia acreditar seriamente que, se deixássemos esses carros sozinhos por muito tempo, o acúmulo de erros de duplicação cometidos à medida que se reproduzissem resultaria em outra coisa que não a devolução e, eventualmente, poderia até ser organizado por forças seletivas em modelos de automóveis mais avançados?

▪️ Um olhar mais cuidadoso

Mas eu não acho que isso deixa suficientemente claro o quão difícil seria criar carros verdadeiramente auto-replicantes. Então vamos ver isso com mais cuidado. Sabemos como construir um carro Ford Modelo T simples. Agora vamos construir uma fábrica dentro deste carro, para que ele possa produzir carros Modelo T automaticamente.

Chamaremos o novo carro, com a fábrica do Modelo T dentro, de “Modelo U”.

Um carro com uma fábrica de automóveis inteira dentro, que nunca requer qualquer intervenção humana, está muito além da nossa tecnologia atual, mas não parece impossível que as gerações futuras possam construir um Modelo U.

É claro que os carros Modelo U não são auto-replicadores, porque eles só podem construir modelos T simples.

Então, vamos adicionar mais tecnologia a este carro para que ele possa construir o Modelo U, ou seja, o Modelo T com fábricas de construção de automóveis dentro. Este novo carro “Modelo V”, com uma fábrica totalmente automatizada no interior capaz de produzir os Modelos U (que estão muito além da nossa tecnologia atual), seria inimaginavelmente complexo.

Mas este novo Model V agora é um auto-replicador? Não, porque apenas constrói o Modelo U muito mais simples. As espécies do Modelo V serão extintas após duas gerações, porque seus filhos serão Modelo U e seus netos serão Modelo T inférteis!

▪️ Então de volta ao trabalho

Cada vez que adicionamos tecnologia a esse carro, para aproximá-lo da meta de reprodução, apenas movemos as traves, porque agora temos um carro mais complicado de reproduzir.

Parece que os novos modelos cresceriam exponencialmente em complexidade, e começamos a nos perguntar se é mesmo teoricamente possível criar máquinas auto-replicantes.

No entanto, vemos essas máquinas ao nosso redor no mundo dos vivos. Você e eu somos dois exemplos. E aqui ignoramos a questão muito difícil de onde esses carros obtêm os metais, a borracha e outras matérias-primas de que precisam para abastecer suas fábricas.

É claro que os materialistas dirão que a evolução não criou diretamente máquinas auto-replicantes avançadas.

Em vez disso, levou apenas um primeiro auto-replicador simples e gradualmente evoluiu para auto-replicadores cada vez mais avançados.

Mas, além do fato de que os engenheiros humanos ainda não têm ideia de como criar qualquer máquina auto-replicante “simples”, o ponto é que os evolucionistas estão atribuindo a causas naturais a capacidade de criar coisas muito mais avançadas do que carros auto-replicantes (por exemplo, humanos auto-replicantes), que parecem impossíveis, ou virtualmente impossíveis, de projetar.

Eu admiti em meu post anterior (e em meu vídeo A Summary of the Evidence for Intelligent Design ”) que engenheiros humanos podem algum dia construir uma máquina auto-replicante. Mas mesmo que o façam, isso não mostrará que a vida poderia ter surgido por meio de processos naturais. Só terá mostrado que poderia ter surgido através do design.

▪️ Design por erros de duplicação

De qualquer forma, como escrevi lá, mesmo que pudéssemos criar carros auto-replicantes, quem poderia acreditar seriamente que os erros de duplicação cometidos à medida que se reproduziam poderiam levar a grandes avanços? (E até mesmo máquinas inteligentes e conscientes eventualmente.) Certamente uma máquina inimaginavelmente complexa como um carro auto-replicante só poderia ser danificada por tais erros, mesmo quando filtrada pela seleção natural.

Estamos tão acostumados a ver animais e plantas se reproduzirem com degradação mínima de geração em geração que não percebemos o quão surpreendente isso realmente é.

Nós realmente não temos ideia de como os seres vivos são capazes de passar suas atuais estruturas complexas para seus descendentes, muito menos como eles poderiam evoluir estruturas ainda mais complexas.

Quando os matemáticos têm uma prova simples e clara de um teorema e um contra-argumento longo e complicado, cheio de suposições não comprovadas e argumentos questionáveis, aceitamos a prova simples, mesmo antes de encontrarmos os erros no contra-argumento complicado.

O argumento para o design inteligente não poderia ser mais simples ou mais claro: forças não inteligentes sozinhas não podem reorganizar átomos em computadores e aviões e usinas nucleares e telefones inteligentes, e qualquer tentativa de explicar como isso pode falhar em algum lugar porque obviamente não pode.

Como muitos cientistas não ficam impressionados com argumentos tão simples, meu post foi uma tentativa de apontar alguns dos erros na explicação de três etapas do materialista sobre como eles poderiam. E dizer que todas as três etapas estão cheias de suposições não comprovadas e argumentos questionáveis é um eufemismo.

No mínimo, deve ficar claro agora que, embora a ciência possa explicar tudo o que aconteceu em outros planetas apelando apenas para as forças não inteligentes da natureza, tentar explicar a origem e a evolução da vida na Terra é uma tarefa muito mais difícil e o design inteligente deve pelo menos ser contado entre as opiniões que podem ser ouvidas.

De fato, isso já está começando a acontecer.

Morfogênese: Codificação Para Forma

Evolution News

Organismos são hierarquias de formas. As bactérias formam hastes, espirais e esferas. Os eucariotos unicelulares constroem diversas organelas por dentro e assumem uma forma característica por fora (compare Stentor, Paramecium e Amoeba ). Pense em todas as variedades de formas em organismos multicelulares de Volvox(colônia de organismos unicelulares aquáticos [algas]) a eucariotos complexos – hidra, rotíferos, planários na extremidade microscópica; caranguejos, polvos e besouros na faixa intermediária inferior; castores, rosas e humanos na faixa média superior; baleias, sequóias e braquiossauros na extremidade grande. As plantas geram caules, folhas e flores. Os animais desenvolvem tecidos que se organizam em órgãos que se combinam nos planos do corpo. Como todas essas formas 3-D emergem de um código linear? Esse é o enigma da morfogênese.

Totalidades Funcionais

Os biólogos sabem sobre códigos genéticos para moléculas muito bem agora, mas onde está o software para anatomia? O modismo recente para impressão 3D é rude em comparação. Essas máquinas podem produzir uma forma a partir de um código linear, mas elas simplesmente constroem um objeto estático, uma camada de cada vez, usando material homogêneo. A morfogênese requer reunir diversos materiais para construir máquinas em movimento, como corações. Elas devem continuar funcionando em todos os níveis enquanto estão em conexão com outras máquinas móveis durante a construção. O produto final é o que Douglas Axe chama de “todo funcional” ( Inegável , p. 143).

Todos funcionais em biologia são compostos de componentes e subcomponentes funcionais organizados hierarquicamente e constituintes elementares que não funcionam apenas no espaço tridimensional, mas na quarta dimensão do tempo. Elas também possuem a notável propriedade de auto-reparo.

Michael Levin, diretor do Allen Discovery Center na Tufts University e Associate Faculty no Instituto Wyss da Harvard University, está perplexo com a origem das formas biológicas. Ele escreve em The Scientist:

Embora os genomas codifiquem previsivelmente as proteínas presentes nas células, uma lista simples de partes moleculares não nos diz o suficiente sobre o layout anatômico ou o potencial regenerativo do corpo que as células trabalharão para construir. Os genomas não são um projeto para a anatomia e a edição do genoma é fundamentalmente limitada pelo fato de que é muito difícil inferir quais genes ajustar e como atingir os resultados anatômicos complexos desejados. Da mesma forma, as células-tronco geram os blocos de construção dos órgãos, mas a capacidade de organizar tipos específicos de células em uma mão ou olho humano funcional esteve e estará além do alcance da manipulação direta por muito tempo. [Enfase adicionada.]

No filme Terminator 2, o assassino do futuro é esmagado em mil fragmentos de metal líquido e, em seguida, se reconstitui para continuar sua missão. É uma peça de efeitos especiais muito inteligente, mas quando você pensa sobre o problema, como cada fragmento poderia saber para onde ir? E, no entanto, algo assim acontece em organismos que são capazes de se regenerar, como hidras, planárias, axolotes e algumas outras espécies. Algo assim também ocorre durante o desenvolvimento embrionário.

Após várias rodadas de divisão celular de clones, começa a diversificação e a forma começa a surgir. Cada célula ganha um papel e um destino para cumprir esse papel. Veja o videoclipe da Illustra Media sobre o desenvolvimento embrionário de pintinhos:

Além do DNA

No desenvolvimento embrionário humano, algo além do DNA diz à massa em crescimento quantas células do fígado são necessárias, como elas devem se organizar na forma familiar do fígado, quantos vasos sanguíneos são necessários para suprir o fígado. Além disso, algo regula como essas formas coordenam seu crescimento desde o bebê até o adulto. O fígado sempre termina no tamanho e posição adequados sob as costelas do lado direito, com as conexões certas com outros órgãos. Todos os órgãos e sistemas seguem esse processo direcionado a um objetivo.

Alcançar esse resultado requer muito mais informações do que o código do DNA possui apenas para as enzimas hepáticas, por mais complexo que seja. Onde está o “software de biologia – as regras que permitem grande plasticidade em como os coletivos de células geram anatomias confiáveis”?

Responder à questão exigirá pesquisas interdisciplinares, ressalta Levin. Os cientistas apenas deram alguns passos de bebê para resolver esse enorme quebra-cabeça. Tudo o que eles podem fazer atualmente é tentar dividir a questão em subquestões administráveis.

Mas os pesquisadores que trabalham nas áreas de morfologia sintética e biofísica regenerativa estão começando a entender as regras que regem a plasticidade do crescimento e reparo de órgãos. Em vez de tarefas de microgerenciamento que são complexas demais para serem implementadas diretamente no nível celular ou molecular, e se resolvêssemos o mistério de como grupos de células cooperam para construir corpos multicelulares específicos durante a embriogênese e a regeneração? Talvez então pudéssemos descobrir como motivar os coletivos de células a construir quaisquer características anatômicas que desejamos.

Até agora, eles conseguiram apenas que embriões de sapo desenvolvessem estranhas formas sintéticas por meio da engenharia genética. É um começo emocionante, pensa Levin, mas o trabalho lembra crianças em um parquinho.

Essas células reiniciaram sua multicelularidade em uma nova forma, sem alterações genômicas. Isso representa uma caixa de areia extremamente emocionante na qual os bioengenheiros podem atuar, com o objetivo de decodificar a lógica do controle anatômico e comportamental, bem como compreender a plasticidade das células e a relação dos genomas com as anatomias.

Uma revolução biológica

Este trabalho pode representar o início de uma revolução biológica tão significativa quanto a revolução genômica, quando a genética passou das moléculas aos códigos. Ele representa o próximo passo: “elucidar os cálculos que as células e grupos de células realizam para orquestrar a construção de tecidos e órgãos em uma escala de corpo inteiro”. É como se os bioquímicos tivessem entendido como os instrumentos musicais são feitos e agora quisessem ver como a música é executada e como a música é derivada de uma partitura codificada por símbolos silenciosos em uma página. Mas eles estão tentando fazer tudo isso sem o protagonista: o compositor!

A próxima geração de avanços nesta área de pesquisa surgirá do fluxo de ideias entre cientistas da computação e biólogos. Desbloquear todo o potencial da medicina regenerativa exigirá que a biologia faça a jornada que a ciência da computação já percorreu , desde o foco no hardware – as proteínas e vias bioquímicas que realizam operações celulares – até o software fisiológico que permite que redes de células adquiram, armazenem e agir com base nas informações sobre a geometria do órgão e, na verdade, do corpo inteiro.

No mundo da informática, essa transição de reconectar o hardware para a reprogramação do fluxo de informações, alterando as entradas, deu origem à revolução da tecnologia da informação. Essa mudança de perspectiva pode transformar a biologia, permitindo que os cientistas alcancem as visões ainda futurísticas da medicina regenerativa.

O esforço também pode transformar a engenharia, diz ele. Os engenheiros podem aprender como os organismos constroem estruturas que ainda funcionam em ambientes ruidosos e podem permanecer resistentes a perturbações.

Mesmo quando seu grupo faz a engenharia genética de embriões de rã, diz Levin, os embriões tendem a encontrar o caminho de volta à forma desejada, como se um processo de monitoramento comparasse constantemente suas atividades com a forma ideal. Como essas informações são armazenadas e comunicadas?

O notável não é simplesmente que o crescimento começa após uma lesão e que vários tipos de células são gerados, mas que esses corpos crescerão e se remodelarão até que uma anatomia correta esteja completa, e então eles param. Como o sistema identifica a morfologia alvo correta, orquestra os comportamentos individuais das células para chegar lá e determina quando o trabalho está concluído? Como ele comunica essas informações para controlar as atividades celulares subjacentes?

Essas são questões estimulantes para a comunidade de DIs considerar. O DI compreende previsão, controle e comunicação.

O darwinismo está à altura da tarefa?

Levin tenta trazer a evolução para o cenário.

A evolução explora três modalidades para atingir essa homeostase anatômica: gradientes bioquímicos, circuitos bioelétricos e forças biofísicas. Eles interagem para permitir que a mesma forma em grande escala surja, apesar de perturbações significativas.

Mas isso não é evolução darwiniana de forma alguma! Um processo físico sem sentido e sem objetivo não se importa com o que acontece. Não pode explorar. Não pode alcançar. Não pode ativar. Essa afirmação é como colocar um adesivo de Darwin em um maquinário de design inteligente. Muito menos pode o darwinismo sinalizar, criar e operar redes elétricas, tomar decisões ou regular qualquer coisa.

Observar não é explicar. O grupo de Levin pode observar o que acontece, mas ele apela a causas inadequadas para explicá-las. A equipe pode ajustar os processos de trabalho para obter resultados modificados, mas não pode explicar seu surgimento. Eles podem imitá-los, mas não originá-los. Eles podem compará-los a computadores e softwares projetados de forma inteligente, mas não levam em conta as semelhanças apelando para causas opostas.

A imagem emergente neste campo é que o software anatômico é altamente modular – uma propriedade-chave que os cientistas da computação exploram como sub rotinas e que muito provavelmente contribui em grande parte para a evolução biológica e a plasticidade evolutiva.

“Evolucionabilidade” e “plasticidade evolutiva” são termos altamente enganosos. O que Levin significa é a capacidade de aprender e se adaptar às circunstâncias. Isso requer design. E por que a plasticidade deve ser evolutiva?Pegue a palavra eletrônica e reconheça o conceito como robustez. Isso também é design. A tolerância a perturbações, com alguma margem de manobra para mudanças, é uma boa estratégia de projeto. As composições musicais também permitem alguma plasticidade, como quando o compositor marca “Ad lib” para uma improvisação ou dá espaço para uma cadência. As obras também podem ser modificadas para conjuntos diferentes, como quando uma obra orquestral é transcrita para orquestra de câmara ou piano.

Aqui está outro exemplo de fixação de um adesivo “Feito por Darwin” em conceitos de design:

Na biomedicina molecular, ainda estamos focados principalmente na manipulação do hardware celular – as proteínas que cada célula pode explorar. Mas a evolução garantiu que os coletivos celulares usem essa máquina versátil para processar informações de maneira flexível e implementar uma ampla gama de resultados de formato corporal em grande escala. Este é o software da biologia: a memória, a plasticidade e a reprogramação das redes de controle morfogenético.

Tal afirmação não faz sentido. A evolução não consegue entender as máquinas ou garantir que as células as usem.

Design Science está à altura da tarefa?

Somente a ciência do design tem a estrutura conceitual para entender este “novo tipo de epigenética, informação que é armazenada em um meio diferente de sequências de DNA e cromatina”. Tecnologia da Informação (TI) é design science por definição. Levin essencialmente repete a falácia de Darwin de usar a seleção artificial como um análogo da seleção natural, exceto que, na morfogênese, inferimos a atividade de uma inteligência projetada a partir de seus efeitos e de nossa experiência uniforme com a capacidade da mente de organizar componentes para atingir alvos de maneira confiável.

O progresso será lento se o DI assumir a liderança na pesquisa em morfogênese? Certamente não. Os cientistas do design podem continuar o trabalho com embriões de rã e engenharia genética. Na verdade, eles provavelmente trabalharão de forma mais produtiva, sem o peso da bagagem do antigo mito vitoriano de Darwin.

O acaso não é uma causa; inteligência é. A inteligência pode conceber um plano, exercer a previsão para identificar os requisitos e, então, executar o plano programando os componentes para cumprir o plano. Na vanguarda desta grande revolução biológica, é hora de reconhecer que o software anatômico é um design inteligente em todos os seus aspectos.

Artigo Publicado No Journal of Theoretical Biology Explicitamente Apoia O Design Inteligente

Evolution News |

Como John West observou aqui na semana passada , o Journal of Theoretical Biology publicou um artigo explicitamente pró-design inteligente, “Usando métodos estatísticos para modelar o ajuste fino de máquinas e sistemas moleculares”. Vamos dar uma olhada no conteúdo. O artigo é matemático, discutindo modelos estatísticos de fazer inferências, mas também é inovador por este motivo crucial: ele considera e propõe o design inteligente, pelo nome, como uma explicação viável para a origem do “ajuste fino” na biologia. Este é um grande avanço para a ciência, mas também para a liberdade de expressão. Se o artigo for qualquer indicação, aparecendo como aparece em um importante jornal revisado por pares, algumas das restrições sufocantes na defesa do DI podem estar desaparecendo.

Os autores são Steinar Thorvaldsen, professor de ciência da informação na Universidade de Tromsø, na Noruega, e Ola Hössjer, professor de matemática estatística na Universidade de Estocolmo. O artigo, que é de acesso aberto, começa observando que, embora o ajuste fino seja amplamente discutido na física, ele precisa ser considerado mais no contexto da biologia:

O ajuste fino tem recebido muita atenção na física e afirma que as constantes fundamentais da física são perfeitamente ajustadas a valores precisos para uma rica química e permissão de vida. Ainda não foi aplicado de maneira ampla à biologia molecular.

Os autores explicam o principal impulso do artigo:

No entanto, neste artigo, argumentamos que os sistemas biológicos apresentam ajuste fino em diferentes níveis, por exemplo, proteínas funcionais, máquinas bioquímicas complexas em células vivas e redes celulares. Este artigo descreve o ajuste fino molecular, como pode ser usado em biologia e como desafia o pensamento darwiniano convencional. Também discutimos os métodos estatísticos que sustentam o ajuste fino e apresentamos uma estrutura para tal análise.

Eles explicam como o ajuste fino é definido. A definição é essencialmente equivalente à complexidade especificada:

Definimos ajuste fino como um objeto com duas propriedades: deve a) ser improvável de ter ocorrido por acaso, sob a distribuição de probabilidade relevante (isto é, complexo) e b) estar em conformidade com uma especificação independente ou separada (isto é, específica).

Em seguida, eles introduzem o conceito de “design” e explicam como os humanos são inatamente capazes de reconhecê-lo:

Um projeto é uma especificação ou plano para a construção de um objeto ou sistema, ou o resultado dessa especificação ou plano na forma de um produto. O próprio termo design vem da palavra latina medieval “designare” (denotando “marcar, apontar, escolher”); de “de” (saída) e “signum” (marca de identificação, sinal). Conseqüentemente, um edital que divulgue algo ou forneça informações. O design geralmente deve satisfazer certos objetivos e restrições. Também se espera que ele interaja com um determinado ambiente e, assim, seja realizado no mundo físico. Os seres humanos têm uma compreensão intuitiva poderosa do design que precede a ciência moderna. Nossas intuições comuns invariavelmente começam com o reconhecimento de um padrão como uma marca de design. O problema é que nossas intuições sobre o design não eram refinadas e eram pré-teóricas. Por essa razão, é relevante nos perguntarmos se é possível virar o jogo sobre essa disparidade e colocar essas intuições grosseiras e pré-teóricas sobre uma base científica sólida.

Essa última frase é a chave: o objetivo é entender se existe um método científico pelo qual o design pode ser inferido. Eles propõem que o design pode ser identificado revelando o ajuste fino. O artigo explica os métodos estatísticos para a compreensão do ajuste fino, que eles argumentam que reflete o “design”:

O ajuste fino e o design são entidades relacionadas. O ajuste fino é um método de baixo para cima, enquanto o design é mais como uma abordagem de cima para baixo. Assim, focamos no tópico de ajuste fino no presente artigo e abordamos as seguintes questões: É possível reconhecer o ajuste fino em sistemas biológicos nos níveis de proteínas funcionais, grupos de proteínas e redes celulares? O ajuste fino em biologia molecular pode ser formulado usando métodos estatísticos de última geração ou os argumentos são apenas “aos olhos de quem vê”?

Eles citam o trabalho de vários teóricos importantes na comunidade de pesquisa do DI.

Ajuste fino como uma resposta ao princípio de Copérnico

Eles retornam à física e ao “princípio antrópico”, a ideia de que as leis da natureza são precisamente adequadas para a vida:

Suponha que as leis da física fossem um pouco diferentes do que realmente são, quais seriam as consequências? (Davies, 2006). … As chances de que o universo permita a vida são tão infinitesimais que são incompreensíveis e incalculáveis. … O universo perfeitamente ajustado é como um painel que controla os parâmetros do universo com cerca de 100 botões que podem ser ajustados para certos valores. … Se você girar qualquer botão um pouco para a direita ou para a esquerda, o resultado é um universo inóspito para a vida ou nenhum universo. Se o Big Bang tivesse sido apenas um pouco mais forte ou mais fraco, a matéria não teria se condensado e a vida nunca teria existido. As chances de nosso universo se desenvolver eram “enormes” – e, no entanto, aqui estamos, um ponto que equivale a implicações religiosas …

No entanto, ao invés de entrar na religião, eles aplicam estatísticas para considerar a possibilidade de “design” como uma explicação para o ajuste fino do universo. Eles citam o teórico do DI William Dembski:

William Dembski… considera o argumento do ajuste fino como sugestivo, como ponteiros para o design subjacente. Podemos descrever essa inferência como raciocínio abdutivo ou inferência para a melhor explicação. Esse raciocínio produz uma conclusão plausível que é relativamente provável de ser verdadeira, em comparação com hipóteses concorrentes, dado nosso conhecimento de fundo. No caso do ajuste fino de nosso cosmos, o design é considerado uma explicação melhor do que um conjunto de multi-universos que carece de qualquer evidência empírica ou histórica.

O artigo oferece razões adicionais pelas quais o multiverso é uma explicação insatisfatória para o ajuste fino – ou seja, que “as hipóteses do multiverso não prevêem o ajuste fino para este universo em particular melhor do que a hipótese de um único universo” e “deveríamos preferir as teorias que melhor prevêem (para este ou qualquer universo) os fenômenos que observamos em nosso universo. ”

Ajuste fino em biologia

O artigo analisa as linhas de evidência para o ajuste fino em biologia, incluindo informações, complexidade irredutível, evolução de proteínas e o “problema do tempo de espera”. Ao longo do caminho, ele considera os argumentos de muitos teóricos do DI, começando com uma breve revisão mostrando como a literatura usa palavras como “código de sequência”, “informação” e “máquina” para descrever a complexidade da vida:

Uma das descobertas surpreendentes da biologia moderna foi que a célula opera de maneira semelhante à tecnologia moderna, enquanto a informação biológica é organizada de maneira semelhante ao texto simples. Palavras e termos como “código de sequência”, “informação” e “máquina” têm se mostrado muito úteis para descrever e compreender a biologia molecular (Wills, 2016). Os blocos básicos de construção da vida são proteínas, moléculas semelhantes a cadeias longas que consistem em combinações variadas de 20 aminoácidos diferentes. As máquinas bioquímicas complexas geralmente são compostas de muitas proteínas, cada uma delas dobrada e configurada em uma estrutura 3D exclusiva, dependendo da sequência exata dos aminoácidos dentro da cadeia. As proteínas empregam uma ampla variedade de dobras para realizar sua função biológica, e cada proteína tem uma forma altamente especificada com algumas pequenas variações.

O artigo cita e revisa o trabalho de Michael Behe, Douglas Axe, Stephen Meyer e Günter Bechly. Algumas dessas discussões são bastante longas e extensas. Primeiro, o artigo contém uma explicação lúcida da complexidade irredutível e da obra de Michael Behe:

Michael Behe e outros apresentaram ideias de design em biologia molecular e publicaram evidências de “máquinas bioquímicas irredutivelmente complexas” em células vivas. Em seu argumento, algumas partes dos sistemas complexos encontrados na biologia são extremamente importantes e afetam a função geral de seu mecanismo. O ajuste fino pode ser delineado por meio das partes vitais e interativas dos organismos vivos. Em “Darwin’s Black Box” (Behe, 1996), Behe exemplificou sistemas, como a bactéria flagelo usa para nadar e a cascata de coagulação do sangue, que ele chamou de irredutivelmente complexa, configurada como um notável trabalho em equipe de vários (muitas vezes dezenas ou mais) proteínas interagindo. É possível em um modelo incremental que tal sistema possa evoluir para algo que ainda não existe? Muitos sistemas biológicos não parecem ter um predecessor funcional viável a partir do qual poderiam ter evoluído gradativamente, e a ocorrência em um salto ao acaso é extremamente pequena. Para reformular o primeiro homem na lua: “Não são pequenos passos de proteínas, nenhum salto gigante para a biologia”.

[…]

Um sistema de complexidade irredutível Behe foi mencionado na Seção 3. Ele é composto de vários módulos interativos bem combinados que contribuem para a função básica, em que a remoção de qualquer um dos módulos faz com que o sistema efetivamente cesse de funcionar. Behe não ignora o papel das leis da natureza. A biologia permite mudanças e modificações evolutivas. A evolução está aí, o design irredutível está aí, e ambos são observados. As leis da natureza podem organizar a matéria e forçá-la a mudar. O que Behe quer dizer é que existem alguns sistemas irredutivelmente complexos que não podem ser produzidos pelas leis da natureza:

“Se uma estrutura biológica pode ser explicada em termos dessas leis naturais [reprodução, mutação e seleção natural], então não podemos concluir que ela foi projetada. ... no entanto, eu mostrei por que muitos sistemas bioquímicos não podem ser construídos pela seleção natural trabalhando em mutações: nenhuma rota direta e gradual existe para esses sistemas complexos irredutíveis, e as leis da química trabalham fortemente contra o desenvolvimento não direcionado dos sistemas bioquímicos que fazem as moléculas como AMP1 ”(Behe, 1996, p. 203).

Então, mesmo que as leis naturais trabalhem contra o desenvolvimento dessas “complexidades irredutíveis”, elas ainda existem. A forte sinergia dentro do complexo proteico torna-o irredutível a um processo incremental. Elas devem ser reconhecidas como condições iniciais ajustadas das sequências de proteínas constituintes. Essas estruturas são exemplos biológicos de nanoengenharia que superam qualquer coisa que os engenheiros humanos criaram. Tais sistemas representam um sério desafio para uma explicação darwiniana da evolução, uma vez que sistemas irredutivelmente complexos não têm séries diretas de intermediários selecionáveis e, além disso, como vimos na Seção 4.1, cada módulo (proteína) é de baixa probabilidade por si só.

O artigo também analisa a pesquisa revisada por pares do cientista de proteínas Douglas Axe, bem como seu livro de 2016, Undeniable, sobre a capacidade de evolução das dobras de proteínas:

Um objetivo importante é obter uma estimativa da prevalência geral de sequências que adotam dobras proteicas funcionais, ou seja, a estrutura dobrada à direita, com a dinâmica correta e um sítio ativo preciso para sua função específica. Douglas Axe trabalhou nessa questão no Medical Research Council Center em Cambridge. Os experimentos que ele realizou mostraram uma prevalência entre 1 em 10 50 a 1 em 10 74 de sequências de proteínas formando uma dobra de tamanho de domínio de trabalho de 150 aminoácidos (Ax, 2004). Portanto, as proteínas funcionais requerem sequências altamente organizadas, como ilustrado na Fig. 2. Embora as proteínas tolerem uma gama de aminoácidos possíveis em algumas posições na sequência, um processo aleatório que produz cadeias de aminoácidos deste comprimento tropeçaria em apenas uma proteína funcional cerca de uma em cada 10 50 a 10 74tentativas devido à variação genética. Este resultado empírico é bastante análogo à inferência da física ajustada.

[…]

O espaço de busca acaba sendo impossivelmente vasto para que a seleção cega tenha uma pequena chance de sucesso. A visão contrastante é inovações baseadas em engenhosidade, esperteza e inteligência. Um elemento disso é o que Axe chama de “coerência funcional”, que sempre envolve planejamento hierárquico, portanto, é um produto de ajuste fino. Ele conclui: “A coerência funcional torna a invenção acidental fantasticamente improvável e, portanto, fisicamente impossível” (Axe, 2016, p. 160).

Eles concluem que a literatura mostra que “a probabilidade de encontrar uma proteína funcional no espaço de sequência pode variar amplamente, mas geralmente permanece muito além do alcance dos processos darwinianos (Ax, 2010a).”

Citando o trabalho de Günter Bechly e Stephen Meyer, o artigo também analisa a questão de saber se o registro fóssil concede tempo suficiente para que sistemas complexos surjam por meio de mecanismos darwinianos. Isso é conhecido como o “problema do tempo de espera”:

Atingindo o ajuste fino em um modelo darwiniano convencional: o problema do tempo de espera

Nesta seção, iremos elaborar mais sobre a conexão entre a probabilidade de um evento e o tempo disponível para que esse evento aconteça. No contexto dos sistemas vivos, precisamos perguntar se os mecanismos darwinianos convencionais têm a capacidade de alcançar o ajuste fino durante um determinado período de tempo. Isso é interessante para interpretar corretamente o registro fóssil, que muitas vezes é interpretado como tendo longos períodos de estase interrompidos por mudanças abruptas muito repentinas (Bechly e Meyer, 2017). Exemplos de tais mudanças repentinas incluem a origem da fotossíntese, as explosões cambrianas, a evolução de olhos complexos e a evolução do voo animal. Acredita-se que as mudanças genéticas que acompanham ocorreram muito rapidamente, pelo menos em uma escala de tempo macroevolutiva, durante um período de tempo t. Para testar se isso é possível, um modelo matemático é necessário para estimar a prevalência P ( A ) do evento A em que as mudanças genéticas necessárias em uma espécie ocorrem dentro de uma janela de tempo de comprimento t.

Ao longo das discussões, há várias citações do BIO-Complexity, um jornal dedicado a investigar as evidências científicas do design inteligente.

Uma Séria Consideração do Design Inteligente

Por fim, os autores consideram o design inteligente como uma possível explicação do ajuste fino biológico, citando fortemente o trabalho de William Dembski, Winston Ewert, Robert J. Marks e outros teóricos do DI:

O Design Inteligente (ID) tem ganhado muito interesse e atenção nos últimos anos, principalmente nos EUA, por chamar a atenção do público, bem como desencadear discussões vívidas no mundo científico e público. O DI visa aderir aos mesmos padrões de investigação racional de outros empreendimentos científicos e filosóficos, e está sujeito aos mesmos métodos de avaliação e crítica. O DI tem sido criticado, tanto por sua lógica subjacente quanto por suas várias formulações (Olofsson, 2008; Sarkar, 2011).

William Dembski propôs originalmente o que chamou de “filtro explicativo” para distinguir entre eventos devido ao acaso, regularidade legal ou design (Dembski, 1998). Visto em um nível suficientemente abstrato, sua lógica é baseada em princípios e técnicas bem estabelecidas da teoria de teste de hipótese estatística. No entanto, é difícil de aplicar a muitas aplicações ou contextos biológicos interessantes, porque um grande número de cenários potenciais, mas desconhecidos, podem existir, o que torna difícil formular uma hipótese nula para um teste estatístico (Wilkins e Elsberry, 2001; Olofsson, 2008 )

A versão reformulada de uma medida de complexidade publicada por Dembski e seus colegas de trabalho é chamada de Complexidade Especificada Algorítmica (ASC) (Ewert et al., 2013; 2014). O ACS incorpora medidas de complexidade de Shannon e Kolmogorov e quantifica o grau em que um evento é improvável e segue um padrão. A complexidade de Kolmogorov está relacionada à compressão de dados (e, portanto, de padrões), mas sofre da propriedade de ser incognoscível, pois não existe um método geral para computá-la. No entanto, é possível fornecer limites superiores para a complexidade de Kolmogorov e, conseqüentemente, o ASC pode ser limitado sem ser calculado exatamente. ASC é baseado no contexto e é medido em bits. Os mesmos autores aplicaram esse método para linguagem natural, ruído aleatório, dobramento de proteínas, imagens etc. (Marks et al., 2017).

[…]

As leis, constantes e condições iniciais primordiais da natureza apresentam o fluxo da natureza. Esses objetos puramente naturais descobertos nos últimos anos mostram a aparência de serem deliberadamente ajustados. Proteínas funcionais, máquinas moleculares e redes celulares são improváveis quando vistas como resultados de um modelo estocástico, com uma distribuição de probabilidade relevante (tendo um pequeno P ( A )), e ao mesmo tempo eles estão em conformidade com uma especificação independente ou separada (o conjunto A é definido em termos de especificidade). Esses resultados são importantes e deduzidos de fenômenos centrais da ciência básica. Tanto na física quanto na biologia molecular, o ajuste fino surge como um princípio de união e síntese – uma observação interessante por si só.

Neste artigo, argumentamos que uma análise estatística do ajuste fino é uma abordagem útil e consistente para modelar algumas das categorias de design: ” complexidade irredutível ”(Michael Behe) e ” complexidade especificada” (William Dembski). Conforme mencionado na Seção 1, esta abordagem requer a) que uma distribuição de probabilidade para o conjunto de resultados possíveis seja introduzida e b) que um conjunto A de eventos ajustados ou, mais geralmente, uma função de especificidade f seja definida. Aqui b) requer algum entendimento a priori do que significa ajuste fino, para cada tipo de aplicação, enquanto a) requer um modelo naturalístico de como as estruturas observadas teriam sido produzidas por acaso. As propriedades matemáticas de tal modelo dependem do tipo de dados que é analisado. Normalmente, um processo estocástico deve ser usado para modelar uma característica dinâmica, como a evolução estelar, química ou biológica (darwiniana). No caso mais simples, o espaço de estado de tal processo estocástico é um escalar (um nucleotídeo ou aminoácido), um vetor (um DNA ou cadeia de aminoácidos) ou um gráfico (complexos de proteínas ou redes celulares).

A principal conclusão de nosso trabalho é que o ajuste fino é uma característica clara dos sistemas biológicos. Na verdade, o ajuste fino é ainda mais extremo em sistemas biológicos do que em sistemas inorgânicos. É detectável no âmbito da metodologia científica. A biologia é inerentemente mais complicada do que o universo em grande escala e, portanto, o ajuste fino é ainda mais uma característica. Ainda há mais trabalho a ser feito para analisar estruturas de dados mais complicadas, usando critérios empíricos mais sofisticados. Normalmente, tais critérios correspondem a uma função de especificidade f que não é apenas uma abstração útil de um padrão subjacente, como a aptidão biológica. Em vez disso, é necessária uma função de especificidade que, embora de origem não física, possa ser quantificada e medida empiricamente em termos de propriedades físicas, como funcionalidade. No longo prazo, esses critérios são necessários para tornar as explicações científica e filosoficamente legítimas. No entanto, temos evidências suficientes para demonstrar que o ajuste fino e design merecem atenção na comunidade científica como uma ferramenta conceitual para investigar e compreender o mundo natural. A agenda principal é explorar algumas possibilidades fascinantes para a ciência e criar espaço para novas ideias e explorações. Os biólogos precisam de recursos conceituais mais ricos do que as ciências físicas até agora foram capazes de iniciar, em termos de estruturas complexas que têm informações não físicas como entrada (Ratzsch, 2010). No entanto, os pesquisadores têm mais trabalho a fazer para estabelecer o ajuste fino como uma hipótese científica sustentável e totalmente testável e, em última instância, uma Design Science.

Este é um desenvolvimento significativo. O artigo dá aos argumentos dos teóricos do design inteligente uma audiência importante em um jornal científico convencional. E não perca o objetivo do artigo, que é declarado em sua frase final – trabalhar no sentido de “estabelecer o ajuste fino como uma hipótese científica sustentável e totalmente testável e, em última análise, uma Design Science “. Os autores apresentam argumentos convincentes de que o ajuste fino biológico não pode surgir por meio de mecanismos darwinianos não guiados. É necessária alguma explicação para explicar por que os sistemas biológicos “mostram a aparência de serem deliberadamente ajustados”. Apesar do barulho que geralmente cerca esse debate, o fato de os argumentos do DI receberem um tratamento tão cuidadoso e positivo em um jornal proeminente é, por si só, uma evidência convincente de que o DI tem mérito intelectual. Apesar das afirmações dos críticos do DI, a ciência do design está sendo levada a sério pelos cientistas.

Estudo sugere que os seres humanos podem detectar até mesmo as menores unidades de luz.

By Phys Org 

[Do blog: Texto adaptado – Fontes em Inglês – Imagem do Phys Org ]

 

Uma pesquisa de Patologia Molecular na Áustria mostrou que os seres humanos podem detectar a presença de um único fóton, a menor unidade mensurável de luz. Estudos anteriores haviam estabelecido que indivíduos humanos aclimatados à escuridão, eram capazes de relatar apenas flashes de cinco a sete fótons.

 

light
 

Credit:Petr Kratochvil/public domain 

 

O trabalho foi conduzido por Alipasha Vaziri, professor associado e chefe do Laboratório de Neurotecnologia e Biofísica na Rockefeller e investigador adjunto do Instituto de Pesquisa de Patologia Molecular. Isso foi publicado esta semana na Nature Communications.

º Notável precisão

Se você imaginar isso, é notável: um fóton, a menor entidade física com propriedades quânticas dos quais a luz consiste, está interagindo com um sistema biológico que consiste em bilhões de células, tudo em um ambiente quente e úmido“, diz Vaziri. “A resposta que o fóton gera sobrevive por todo o caminho até o nível de nossa consciência, apesar do (onipresente) ruído de fundo. Qualquer detector feito pelo homem teria de ser arrefecido e isolado do ruído para se comportar da mesma maneira.

Além de gravar a habilidade do olho humano em registrar um único fóton, os pesquisadores descobriram que a probabilidade de fazê-lo foi reforçada quando um segundo fóton havia brilhado alguns segundos antes, como se um fóton “preparasse” o sistema para registrar o próximo.

° Uma fonte de luz quântica

Experimentos designados anteriormente para testarem a sensibilidade do olho humano, sofreram com a falta de tecnologia apropriada, diz Vaziri. “Não é trivial projetar estados de luz que contenham um ou qualquer outro número exato de fótons“, diz ele. “Isso ocorre porque o número de fótons em uma fonte de luz clássica, seja a partir de uma lâmpada ou um laser, segue determinadas distribuições estatísticas. Embora você possa atenuar a luz para reduzir o número de fótons, você normalmente não pode determinar um número exato.

A equipe de Vaziri construiu uma instalação de luz, frequentemente utilizada em óptica quântica e estudos de informação quântica, chamado “spontaneous parametric down-conversions” ou SPDC, que usa um processo em que um fóton de alta energia decai em um cristal não linear. O processo gera exatamente dois fótons com cores complementares. Na montagem experimental, um dos fótons foi enviado para o olho do sujeito, enquanto o outro foi enviada para um detector, permitindo aos cientistas manterem um registo de quando cada fóton foi transmitido para o olho.

º Primeira evidência

Para chegar a suas conclusões, Vaziri e seus colaboradores combinaram a fonte de luz com um protocolo psicofísico inédito, chamado de “duas alternativas de escolha forçada” (2AFC), na qual os sujeitos são repetidamente solicitados para escolherem entre dois intervalos de tempo, onde um dos quais contém um único fóton, enquanto o outro é um espaço em branco.

Os dados recolhidos a partir de mais de 30.000 testes, demonstraram que os seres humanos podem, de fato, detectar um único incidente de fóton em seu olho, com uma probabilidade significativamente acima do acaso.

A próxima coisa que queremos saber é: como é que um sistema biológico atinge essa sensibilidade? Como se consegue isso na presença de ruído? Esse é o único mecanismo para a visão, ou ele poderia nos dizer algo mais geral sobre a forma como os outros sistemas poderiam ter evoluído para detectar sinais fracos na presença de ruído?” indaga Vaziri.

O Jamais Refutado Argumento de Paley

By Junior Eskelsen

 

 

 

172911-004-07BD54B9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Disseram tanto que o argumento foi completamente refutado que qualquer citação a seu respeito seria digna de desprezo e

vergonha. Mas não sou um homem de me preocupar com opiniões alheias e exponho aqui o real pensamento de Paley.

O argumento é de natureza teológica, ou seja, não prova, mas por objetivo justifica a fé, por isso não é “refutável”. A natureza da exposição de Paley é sutil, quase que impercetível no final de sua declaração. A verdade é que não conhecemos qualquer refutação que trate realmente da Analogia do Relojoeiro. Paley parte da natureza e justifica sua fé em um artífice.

Até agora pelo menos os argumentos apresentados sequer tocam na ideia abordada por Paley. A verdade é que existe grande dificuldade descrever as características de design satisfatoriamente.

O que ocorre com o design e suas qualidades também ocorre com vida, informação e outros conceitos de difícil tratamento. Capurro por exemplo escreveu mais de setenta páginas sobre o conceito de informação deixando a questão em aberto frente as insatisfatoriedade dos conceitos apresentados. Esse trabalho recebeu uma versão em português pela UFMG [1].

O coração do argumento de Paley está em “Todos os indícios de um artifício(α), todas as manifestações de um design(β) que existem no relógio existem também nas obras da natureza(δ), com a diferença de que, na natureza, são maiores ou mais numerosos(φ), e isso num grau(ψ) que excede todo o cálculo.”

 

 

 

(α) Conjunto de características comuns.

 

 

(β) Conjunto de predefinições que sustentam um sistema autônomo.

 

 

(δ) Equivalência interpretada como estética, não como reconhecimento de padrões distintos.

 

 

(φ) Riqueza informacional da vida.

 

 

(ψ) O último grau — a autonomia dos sistemas — excede todo cálculo e permanece enigmático até a identificação do limiar da irredutibilidade.

 Todas esses termos persistem na requisição de um tratamento adequado da parte do observador que tenha sutileza para um refinamento e ajuste fino tanto quanto possível. Tanto quanto necessário.

[1] O Conceito de Informação. Capurro. 2007

Rupert Sheldrake – The Science Delusion BANNED TED TALK – Dogmas da ciência

 

 

 

 

 

Texto da Brasil 247

Em conferência polêmica, o biomédico inglês Rupert Sheldrake denuncia o que chama de “dez dogmas da ciência oficial”, afirmando que eles não são de fato verdadeiros. Este é mais um capítulo da revolução de paradigma atualmente em curso no mundo do conhecimento. O conteúdo da fala de Sheldrake chocou os membros do comitê de ciências do TED, que num primeiro momento decidiram banir a palestra, eliminando-a da videoteca da organização.

 

 

Por: Equipe Oásis

 

No ano passado, o biomédico inglês Rupert Sheldrake proferiu no TED (www.ted.com) a palestra The Science Delusion (A ilusão da ciência ou, mais propriamente, A delusão da ciência). Poucas semanas depois, o conselho de consultores científicos do TED decidiu banir essa palestra de Sheldrake. A decisão causou estupor, até mesmo nos meios científicos, dado o prestígio internacional de que goza o autor, bem como pelo fato de o TED ser um palco mundialmente famoso por seu pluralismo e apoio à liberdade de expressão.

 

Banir a palestra de um pensador contemporâneo do porte de Sheldrake foi imediatamente interpretado como uma indicação de que o seu conteúdo poderia ser contundente e inquietante. No centro dos debates estão as afirmações de Rupert Sheldrake sobre o que ele chama de “os dez dogmas da ciência”- dez afirmações correntes da ciência contemporânea que, na opinião desse cientista, não se sustentam como afirmações e deveriam, antes de mais nada, ser tratadas como perguntas, visto que a ciência oficial não tem dados ou comprovações para fazer afirmação alguma seguindo aquilo que poderia efetivamente ser chamado de “processo científico” – ao mesmo tempo em que existem milhares de evidências acumuladas ao longo dos anos que desacreditam a validade dessas afirmações.

Aqui estão os dez dogmas da ciência oficial, segundo Sheldrake. Ele afirma que, quando se observa cada uma dessas ideias cientificamente, vê-se que elas não são de fato verdadeiras:

1. A natureza é mecânica, ou assemelhada a uma máquina.

2. Toda matéria é inconsciente.

3. As leis ou constantes da natureza são fixas.

4. A quantidade total de matéria e energia é sempre a mesma.

5. A natureza não tem propósito.

6. A hereditariedade biológica é material.

7. Memórias são guardadas dentro do seu cérebro.

8. Sua “mente” (consciência) está dentro da sua cabeça.

9. Fenômenos psíquicos como a telepatia não são possíveis.

10. A medicina mecanicista é o único tipo de medicina que funciona.

 

Em São Paulo, Paulo Ferreira, escritor e consultor em desenvolvimento organizacional do bem estar humano, dono do interessante site http://destruidordedogmas.com.br , comenta a polêmica surgida ao redor do banimento dessa palestra de Sheldrake e apresenta ao final de seus comentários alguns links úteis para quem deseja se aprofundar no assunto: “Todas as velhas fronteiras perdem rapidamente a validade. Todas as velhas “certezas” parecem cada vez mais hipóteses construídas sobre pilares muito mais provisórios e inconsistentes do que pareciam há alguns anos. A ultrapassada visão de ciência e espiritualidade como “necessariamente polos opostos” perdeu completamente a validade. Exatamente como tantos pensadores do movimento universalista ou da espiritualidade contemporânea vem sinalizando há um bom tempo. Parece que os muitos cientistas começam a enxergar a ilusão desta divisão artificialmente imposta e silenciosamente aceita, e resolveram tornar-se parte ativa no debate. Da minha parte, que sejam, finalmente, muito bem vindos!”

 

Seguem os links originais sobre toda a polêmica:   http://www.collective-evolution.com/2013/04/10/banned-ted-talk-rupert-sheldrake-the-science-delusion/ http://en.wikipedia.org/wiki/Rupert_Sheldrake http://blog.ted.com/2013/03/18/graham-hancock-and-rupert-sheldrake-a-fresh-take/