O Tesouro De Novos Sistemas CRISPR É Promissor Para A Edição Do Genoma

Por Sara Heardon | Nature

23.Novembro.2023

O sistema CRISPR – Cas9 (foto) é usado para encontrar e cortar sequências específicas de DNA. Credit: Carlos Clarivan/Science Photo Library

CRISPR–Cas9 é mais conhecido como uma ferramenta de laboratório para edição de DNA, mas sua função natural é como parte do sistema imunológico que ajuda certos microrganismos a combater vírus. Agora, os pesquisadores usaram um algoritmo para classificar milhões de genomas para encontrar novos e raros tipos de sistema CRISPR que poderiam eventualmente ser adaptados em ferramentas de edição de genoma.

Estamos simplesmente impressionados com a diversidade dos sistemas CRISPR”, afirma Feng Zhang, bioquímico do Instituto de Tecnologia de Massachusetts, em Cambridge, e coautor de um artigo de 23 de novembro na revista Science que descreve os sistemas[1]. “Fazer essa análise nos permite matar dois coelhos com uma cajadada só: ambos estudam biologia e também potencialmente encontram coisas úteis.

Bactérias unicelulares e archaea usam sistemas CRISPR para se defenderem contra vírus conhecidos como bacteriófagos. Os sistemas geralmente têm duas partes: moléculas de “RNA guia” que reconhecem e se ligam ao DNA ou RNA do fago, e enzimas que cortam ou de outra forma interferem no material genético no local indicado pelo RNA guia.

Até agora, os pesquisadores identificaram seis tipos de sistema CRISPR, designados I – VI. Estes têm propriedades diferentes, incluindo o tipo de enzima que utilizam e como reconhecem, se ligam e cortam o RNA ou o DNA.

O sistema CRISPR-Cas9 comumente usado para engenharia genética é classificado como tipo II, mas as características de outros tipos de CRISPR podem torná-los úteis para outras aplicações.

▪️ Sequências semelhantes

Para encontrar diversos sistemas CRISPR na natureza, Zhang, o bioengenheiro do MIT Han Altae-Tran e seus colegas desenvolveram um algoritmo chamado FLSHclust, que analisa sequências genéticas em bancos de dados públicos.

Estas bases de dados contêm centenas de milhares de genomas de bactérias e arquéias, centenas de milhões de sequências que não foram ligadas a uma espécie específica e milhares de milhões de genes que codificam proteínas. FLSHclust encontrou genes associados ao CRISPR procurando semelhanças entre sequências genéticas e agrupando-as em cerca de 500 milhões de clusters.

Ao observar a função prevista dos clusters, os investigadores encontraram cerca de 130.000 genes associados de alguma forma ao CRISPR, 188 dos quais nunca tinham sido vistos antes, e testaram vários em laboratório para descobrir o que fazem. As suas experiências revelam várias estratégias que os sistemas CRISPR utilizam para atacar bacteriófagos, incluindo desenrolar a dupla hélice do DNA e cortar o DNA de forma a permitir a inserção ou eliminação de genes.

Eles também identificaram fragmentos de DNA “anti-CRISPR” que podem ajudar um fago a escapar das defesas bacterianas.

Entre os novos genes estava o código para um sistema CRISPR totalmente desconhecido que tem como alvo o RNA, que a equipe apelidou de tipo VII. O coautor Eugene Koonin, biólogo do Centro Nacional de Informações sobre Biotecnologia em Bethesda, Maryland, diz que é cada vez mais difícil encontrar novos sistemas CRISPR. O tipo VII – e quaisquer outros tipos que ainda não tenham sido identificados – devem ser extremamente raros na natureza, acrescenta.

Provavelmente serão necessários esforços monumentais para encontrar o próximo tipo.

É difícil saber se certos tipos de sistemas CRISPR são raros porque geralmente não são úteis para microrganismos ou se estão especificamente adaptados a um organismo que vive num ambiente específico, diz Christine Pourcel, microbiologista da Universidade Paris-Saclay. Ela acrescenta que, como os bancos de dados genéticos utilizados no estudo incluem fragmentos de genomas que não estão ligados a organismos específicos, será difícil estudar o papel de alguns dos novos sistemas.

▪️ Resultado impressionante

O algoritmo em si é um grande avanço, na medida em que permitirá aos investigadores procurar outros tipos de proteínas entre espécies, diz Chris Brown, bioquímico da Universidade de Otago em Dunedin, Nova Zelândia. “Estou impressionado com o que eles puderam fazer”, diz ele.

É um tesouro para os bioquímicos”, concorda Lennart Randau, microbiologista da Universidade de Marburg, na Alemanha.

O próximo passo, diz ele, será descobrir os mecanismos através dos quais as enzimas e os sistemas funcionam e como poderão ser adaptados à engenharia biológica.

Brown diz que algumas proteínas CRISPR cortam o DNA aleatoriamente e são inúteis para a engenharia. Mas elas são tão precisas na detecção de sequências de DNA ou RNA que podem ser boas ferramentas de diagnóstico ou de pesquisa.

É muito cedo para dizer se os sistemas CRISPR tipo VII ou qualquer outro gene identificado pelo FLSHclust serão úteis para a engenharia genética, diz Altae-Tran, mas eles têm algumas propriedades que podem ser úteis. O tipo VII, por exemplo, envolve apenas alguns genes que poderiam facilmente caber em um vetor viral e ser entregues nas células.

Por outro lado, alguns dos outros sistemas que a equipe encontrou contêm RNAs-guia muito longos, potencialmente permitindo-lhes atingir sequências genéticas específicas com uma precisão sem precedentes.

[Ênfase adicionada]


Referencias

[1] Altae-Tran, H. et al. Science 382, eadi1910 (2023).

Article Google Scholar

Wi-Fi Para Neurônios: Primeiro Mapa De Sinais Nervosos Sem Fio Revelado Em Vermes

Por Cláudia Lopez Lloreda | Nature

21.Novembro.2023

Estudos encontram uma rede densamente conectada de neurônios que se comunicam por longas distâncias, em vez de através de sinapses.

O verme Caenorhabditis elegans tem 302 neurônios (verdes) que os pesquisadores podem estudar usando ferramentas como marcadores fluorescentes.Crédito: Heiti Paves/Science Photo Library

A ideia de que o sistema nervoso transmite mensagens de uma célula nervosa para outra apenas através de sinapses – os pontos onde as células se ligam de ponta a ponta – está mudando. Dois estudos mostram como as mensagens podem passar entre células a distâncias maiores, através de uma rede nervosa “sem fios” no verme Caenorhabditis elegans.

Os investigadores não tinham apreciado a extensão desta comunicação sem fios, que acontece quando uma molécula chamada neuropéptido é liberada por um neurônio e interceptada por outro a alguma distância. Os novos estudos, publicados na Nature[1 ]e na Neuron[2], mapeiam pela primeira vez toda a rede de comunicação neuropeptídica num organismo modelo.

Sabíamos que estas ligações químicas existiam, mas este é provavelmente o estudo mais abrangente num sistema nervoso completo”, diz Gáspár Jékely, neurocientista da Universidade de Heidelberg, na Alemanha, que não esteve envolvido no trabalho. E o que a investigação mostra, acrescenta, é que “nem tudo se resume às sinapses”.

▪️ Criadores de mapas

Os investigadores já tinham elaborado mapas de ligações anatómicas – conectomas – mostrando como todos os neurónios da mosca da fruta (Drosophila melanogaster) e do C elegans estão ligados pelas suas sinapses.

No entanto, William Schafer, neurocientista do Laboratório de Biologia Molecular MRC em Cambridge, Reino Unido, questionou-se sobre o papel dos neuropeptídeos, que eram considerados apenas auxiliares nas mensagens do sistema nervoso.

Quando comecei a falar sobre isso”, diz ele, “algumas pessoas se perguntaram: ‘será tudo apenas uma espécie de sopa‘”, onde os neuropeptídeos flutuam aleatoriamente de um neurônio para o outro, “ou você pode realmente pensar nisso como uma rede?”

Ele e seus colegas analisaram quais neurônios do sistema nervoso C elegans expressavam genes para certos neuropeptídeos e quais expressavam genes para os receptores desses neuropeptídeos. Usando esses dados, a equipe previu quais pares de células nervosas poderiam estar se comunicando sem fio. Com base nesses resultados, os pesquisadores geraram um mapa potencial de conexões sem fio no verme, encontrando uma conectividade densa que parece muito diferente do diagrama de fiação anatômico do C elegans.

Eles publicaram suas descobertas na Neuron[2] na semana passada.

De forma independente, uma equipe liderada por Andrew Leifer, neurocientista da Universidade de Princeton, em Nova Jersey, estudou como os sinais viajam através do C elegans medindo a atividade neuronal, o que revelou a contribuição desta rede sem fio.

A equipe recorreu à optogenética, uma técnica que usa luz e proteínas sensíveis à luz para acionar as células nervosas para que enviemmensagens” elétricas. Um por um, os pesquisadores ativaram cada um dos 302 neurônios do C elegans e então visualizaram como os sinais se propagavam de um neurônio para o outro.

Os pesquisadores usaram a optogenética para estimular cada um dos neurônios de C. elegans (mostrados aqui na mira) e depois observaram como o sinal elétrico se propaga para outras células nervosas (cintilação vermelha). Crédito: Francesco Randi, Universidade de Princeton

O mapa de atividade que criaram não seguiu o que teriam previsto para C elegans com base apenas no seu conectoma padrão – e eles suspeitaram que a comunicação neuropeptídica era a peça que faltava. Então eles produziram um verme geneticamente modificado que carecia de uma proteína crucial para esse tipo de sinalização, e viram que quando tentaram ativar as células do verme com optogenética, muitos deles permaneceram em silêncio.

Isto sugere que a comunicação sem fio no verme ativa diretamente os neurônios.

Quando os pesquisadores desenvolveram um modelo para descrever a atividade neuronal em C elegans, eles descobriram que aquele que incorporava conexões sinápticas com fio e sinalização sem fio previa melhor como os sinais viajavam no verme do que apenas as conexões sinápticas.

A equipe publicou seus resultados na revista Nature[1] no início deste mês e os apresentou na reunião da Sociedade de Neurociências em Washington DC, em 14 de novembro.

▪️ Uma visão totalmente nova

Foi surpreendente ver o quanto a comunicação [dos neuropeptídeos] pode realmente levar à ativação direta dos neurônios”, diz Francesco Randi, primeiro autor do artigo da Nature, que realizou o trabalho enquanto estava em Princeton.

A rede neuropeptídica foi considerada um auxiliar da sinalização sináptica”, diz Isabel Beets, neurocientista da Universidade Católica de Leuven, na Bélgica, e autora do estudo da Neuron.

Mas a extensa escala deste mapa de sinalização mostra realmente que é igualmente importante, complexo e talvez ainda mais diversificado do que a rede de sinalização sináptica.

Drogas como o popular tratamento para perda de peso semaglutida (Wegovy) podem ativar receptores de neuropeptídeos no corpo, portanto, compreender essa rede sem fio é importante, diz Schafer.

Os próximos passos para Schafer e os seus colegas serão realizar estudos semelhantes noutros organismos – com o objetivo de compreender como a rede neuropeptídica, em combinação com a rede sináptica “ligada”, contribui para o comportamento de um organismo.

Uma técnica publicada na Science[3] na semana passada que permite aos investigadores visualizar onde os neuropeptídeos se ligam aos seus receptores pode ajudar nesta busca.

Como os neuropeptídeos são conservados entre as espécies, alguns investigadores suspeitam que esta rede possa ser semelhante à de outros organismos, incluindo os humanos.

Os dois artigos são belos exemplos de como aproveitar as vantagens de um organismo simples e bem estudado, com muitas ferramentas moleculares e genéticas, para começar a aprender lições que tenho 100% de certeza de que serão aplicadas a todos os animais”, diz Stephen Smith, neurocientista do Allen Institute em Seattle, Washington.

Os pesquisadores esperam que as descobertas estimulem outros a pensar de forma diferente sobre como surge a dinâmica neural.

Acho que temos que nos afastar da visão do sistema nervoso apenas por sinapses”, diz Jékely. “Isso simplesmente não vai funcionar.

[Ênfase adicionada]


Referências

[1] Randi, F., Sharma, A. K., Dvali, S. & Leifer, A. M. Nature 623, 406–414 (2023).

Article PubMed Google Scholar


[2] Ripoll-Sánchez, L. et al. Neuron 111, 3570–3589 (2023).

Article PubMed Google Scholar


[3] Wang, H. et al. Science 382, eabq8173 (2023).

Article PubMed Google Scholar

Como A Identidade Celular É Preservada Quando As Células Se Dividem

Por Massachusetts Institute of Technology | Science Daily

16.Novembro.2023

Estudo sugere que a dobragem 3D do genoma é fundamental para a CAPACIDADE das células de ARMAZENAR e TRANSMITIRMEMÓRIAS‘ de quais genes elas DEVEM expressar

Cada célula do corpo humano contém as mesmas INSTRUÇÕES genéticas, CODIFICADAS no seu DNA. No entanto, de cerca de 30.000 genes, cada célula expressa apenas os genes NECESSÁRIOS PARA se tornar uma célula nervosa, uma célula imunológica ou qualquer uma das outras centenas de tipos de células do corpo.

O DESTINO de cada célula é em grande parte determinado por modificações químicas nas proteínas que DECORAM o seu DNA; essas modificações, por sua vez, CONTROLAM quais genes são ATIVADOS ou DESATIVADOS.

No entanto, quando as células copiam o seu DNA para se dividirem, perdem metade destas modificações, deixando a questão: como é que as células MANTÊM a MEMÓRIA de que tipo de célula DEVERIAM ser?

Um novo estudo do MIT propõe um modelo teórico que ajuda a explicar COMO estas MEMÓRIAS são passadas de geração em geração quando as células se dividem.

A equipe de pesquisa sugere que dentro do núcleo de cada célula, o padrão de dobramento 3D do seu genoma determina quais partes do genoma serão marcadas por essas modificações químicas. Depois de uma célula COPIAR o seu DNA, as marcas são parcialmente perdidas, mas a dobragem 3D permite que cada célula filha RESTAURE facilmente as marcas químicas NECESSÁRIAS para MANTER a sua IDENTIDADE. E cada vez que uma célula se divide, marcas químicas permitem que uma célula restaure a dobragem 3D do seu genoma.

Desta forma, ao CONCILIAR a MEMÓRIA entre a dobragem 3D e as marcas, a MEMÓRIA pode ser PRESERVADA ao longo de centenas de divisões celulares.

“Um aspecto fundamental de como os tipos de células diferem é que diferentes genes SÃO ATIVADOS ou DESATIVADOS. É MUITO DIFÍCIL TRANSFORMAR um TIPO de célula em OUTRO porque esses estados estão MUITO COMPROMETIDOS“, diz Jeremy Owen PhD ’22, principal autor do estudo. “O que fizemos neste trabalho foi desenvolver um modelo simples que destaca características qualitativas dos SISTEMAS químicos dentro das células e COMO eles PRECISAM FUNCIONAR para tornar ESTÁVEIS as MEMÓRIAS de EXPRESSÃO genética.”

Leonid Mirny, professor do Instituto de Engenharia Médica e Ciência do MIT e do Departamento de Física, é o autor sênior do artigo, que aparece hoje na Science.
O ex-pós-doutorado do MIT Dino Osmanovi também é autor do estudo.

▪️ Mantendo a memória

Dentro do núcleo da célula, o DNA está enrolado em proteínas chamadas histonas, formando uma estrutura densamente compactada conhecida como cromatina.

As histonas podem apresentar uma variedade de modificações que ajudam a CONTROLAR QUAIS genes são EXPRESSOS em uma DETERMINADA célula. Essas modificações geram “MEMÓRIA epigenética”, que AJUDA a célula a MANTER seu TIPO celular.

No entanto, COMO essa MEMÓRIA é TRANSMITIDA às células-filhas é um MISTÉRIO.

Trabalhos anteriores do laboratório de Mirny mostraram que a estrutura 3D dos cromossomos dobrados é parcialmente determinada por essas modificações epigenéticas, ou marcas. Em particular, eles descobriram que certas regiões da cromatina, com marcas que DIZEM ÀS CÉLULAS PARA NÃO LEREM um determinado segmento de DNA, atraem-se umas às outras e formam aglomerados densos chamados heterocromatina, que são de DIFÍCIL ACESSO para a célula.

No seu novo estudo, Mirny e os seus colegas queriam responder à questão de como essas marcas epigenéticas são mantidas de geração em geração.

Eles desenvolveram um modelo computacional de um polímero com algumas regiões marcadas e viram que essas regiões marcadas colapsavam umas nas outras, formando um aglomerado denso. Depois estudaram como essas marcas são perdidas e ganhas.

Quando uma célula copia seu DNA para dividi-lo entre duas células-filhas, cada cópia recebe cerca de metade das marcas epigenéticas. A célula PRECISA então RESTAURAR as marcas PERDIDAS ANTES que o DNA seja passado para as células filhas, e a forma como os cromossomos foram dobrados serve como um modelo para onde essas marcas restantes DEVEM ir.

Essas modificações são adicionadas por enzimas ESPECIALIZADAS conhecidas como enzimas “LEITOR-ESCRITOR”. Cada uma dessas enzimas é específica para uma determinada marca e, uma vez que “LÊEM” as marcas existentes, elas “ESCREVEM” marcas adicionais em locais próximos. Se a cromatina já estiver dobrada em formato 3D, as marcas se acumularão em regiões que já tiveram modificações herdadas da célula-mãe.

“Existem várias linhas de evidência que sugerem que a propagação pode acontecer em 3D, ou seja, se houver duas partes próximas uma da outra no espaço, mesmo que não sejam adjacentes ao longo do DNA, então a propagação pode acontecer de uma para outra”, diz Owen. “É assim que a estrutura 3D pode influenciar a propagação dessas marcas”.

Este processo é análogo à propagação de doenças infecciosas, pois quanto mais contatos uma região da cromatina tiver com outras regiões, maior será a probabilidade de ela ser modificada, assim como um indivíduo suscetível a uma determinada doença terá maior probabilidade de ser infectado à medida que o número de contatos aumenta. Nesta analogia, regiões densas de heterocromatina são como cidades onde as pessoas têm muitas interacções sociais, enquanto o resto do genoma é comparável a áreas rurais escassamente povoadas.

“Isso significa essencialmente que as marcas estarão por toda parte na região densa e serão muito esparsas em qualquer lugar fora dela”, diz Mirny.

O novo modelo sugere possíveis paralelos entre memórias epigenéticas armazenadas num polímero dobrado e memórias armazenadas numa rede neural, acrescenta. Os padrões de marcas podem ser considerados análogos aos padrões de conexões formadas entre neurônios que disparam juntos em uma rede neural.

“Em termos gerais, isto sugere que, semelhante à forma como as redes neurais são capazes de PROCESSAR INFORMAÇÕES MUITO COMPLEXAS, o MECANISMO de MEMÓRIA epigenética que descrevemos pode ser capaz de PROCESSAR INFORMAÇÕES, e não apenas ARMAZENÁ-LAS”, diz ele.

▪️ Erosão epigenética

Embora este modelo parecesse oferecer uma boa explicação sobre como a memória epigenética pode ser mantida, os investigadores descobriram que, eventualmente, a ATIVIDADE da enzima LEITOR-ESCRITOR levaria a que todo o genoma fosse coberto por modificações epigenéticas. Quando alteraram o modelo para tornar a enzima mais fraca, ela não cobriu o suficiente do genoma e as memórias foram perdidas em algumas gerações de células.

Para que o modelo considere com maior precisão a preservação das marcas epigenéticas, os investigadores ACRESCENTARAM OUTRO ELEMENTO: LIMITAR a QUANTIDADE de enzima LEITOR-ESCRITOR disponível.

Eles descobriram que se a quantidade de enzima fosse mantida entre 0,1 e 1% do número de histonas (uma porcentagem baseada em estimativas da abundância real dessas enzimas), suas células modelo PODERIAM MANTER COM PRECISÃO sua MEMÓRIA epigenética por até centenas de gerações, dependendo da complexidade do padrão epigenético.

Já se sabe que as células começam a PERDER a sua MEMÓRIA epigenética à medida que ENVELHECEM, e os investigadores planeiam agora estudar se o processo descrito neste artigo pode desempenhar um papel na erosão epigenética e na perda da identidade celular. Eles também planejam modelar uma doença chamada progéria, na qual as células apresentam uma MUTAÇÃO GENÉTICA que LEVA à PERDA de heterocromatina. Pessoas com esta DOENÇA apresentam envelhecimento acelerado.

“A ligação mecanicista entre estas MUTAÇÕES e as mudanças epigenéticas que eventualmente acontecem não é bem compreendida”, diz Owen.

“Seria ótimo usar um modelo como o nosso, onde existem marcas dinâmicas, juntamente com a dinâmica do polímero, para tentar explicar isso”.

Os investigadores também esperam trabalhar com colaboradores para testar experimentalmente algumas das previsões do seu modelo, o que poderia ser feito alterando o nível das enzimas LEITOR-ESCRITOR NAS CÉLULAS VIVAS e medindo o EFEITO na MEMÓRIA epigenética.

A pesquisa foi financiada pelo Instituto Nacional de Pesquisa do Genoma Humano, pelo Instituto Nacional de Ciências Médicas Gerais e pela Fundação Nacional de Ciência.

[Ênfase adicionada]


Referência do periódico: Jeremy A. Owen, Dino Osmanović, Leonid Mirny. Design principles of 3D epigenetic memory systems. Science, 2023; 382 (6672) DOI: 10.1126/science.adg3053

Uma Baleia De Problema Para A Evolução: Mandíbula De Baleia Antiga Encontrada Na Antártida

Por Uncommon Descent | Jonathan McLatchie

14.Outubro.2011

[Nota desse blog: essa pub é uma tradução de um texto antigo do UD (por isso alguns links foram perdidos), porém pertinente sobre os cetáceos, o devaneio evolucionista é o de praxe, e é colossal, um simplismo absurdo, ignorando quantas mudanças complicadíssimas seriam necessárias para transformar algo como um “lobo” num golfinho, numa baleia. O tempo é sempre inimigo, muito tempo representa riscos altíssimos de ser eliminado pela seleção natural, pouco tempo representa insuficiência para ocorrerem as mutações necessárias, e você soma a essa loucura a ausência de uma agência inteligente. A evolução das baleias, dos cetáceos é algo insano!]


MSNBC.com está relatando a descoberta da mandíbula de uma antiga baleia na Antártida: a mais antiga baleia totalmente aquática já descoberta. A notícia relata:

A mandíbula de uma antiga baleia encontrada na Antártica pode ser a mais antiga baleia totalmente aquática já descoberta, disseram cientistas argentinos na terça-feira.

Um cientista não envolvido na descoberta disse que esta poderia sugerir que as baleias evoluíram muito mais rapidamente a partir dos seus precursores anfíbios do que se pensava anteriormente.

O paleontólogo argentino Marcelo Reguero, que liderou uma equipe conjunta argentino-sueca, disse que a mandíbula fossilizada do arqueoceto encontrada em fevereiro remonta a 49 milhões de anos. Em termos evolutivos, isso não está muito longe dos fósseis de protobaleias ainda mais antigas, de 53 milhões de anos atrás, que foram encontrados no Sul da Ásia e em outras latitudes mais quentes.

Essas primeiras protobaleias eram anfíbios, capazes de viver tanto na terra quanto no mar. Esta mandíbula, por outro lado, pertence ao grupo Basilosauridae de baleias totalmente aquáticas, disse Reguero, que lidera pesquisas para o Instituto Antártico Argentino.

“A relevância desta descoberta é que é a baleia completamente aquática mais antiga já encontrada”, disse Reguero, que compartilhou a descoberta com a paleontóloga argentina Claudia Tambussi e os paleontólogos suecos Thomas Mors e Jonas Hagstrom, do Museu de História Natural de Estocolmo.

Paul Sereno, paleontólogo da Universidade de Chicago que não esteve envolvido na pesquisa, disse que se a nova descoberta resistir ao escrutínio de outros cientistas, sugerirá que os arqueocetos evoluíram muito mais rapidamente do que se pensava anteriormente a partir da sua origem semi-aquática no presente. -dia Índia e Paquistão.

“O importante é a localização”, disse Sereno. “Encontrar um na Antártida é muito interessante.”

Como muitos leitores sem dúvida saberão, a evolução da baleia já levantou problemas substanciais devido à escala de tempo extremamente abrupta em que ocorreu. O biólogo evolucionista Richard von Sternberg aplicou anteriormente as equações genéticas populacionais empregadas em um artigo de 2008 de Durret e Schmidt para argumentar contra a plausibilidade da transição acontecer em um período de tempo tão curto. Na verdade, a evolução de Dorudon e Basilosaurus (38 milhões de anos atrás) de Pakicetus (53 milhões de anos atrás) foi anteriormente comprimida em um período de menos de 15 milhões de anos.

Anteriormente, a série das baleias era mais ou menos assim:

Tal transição é uma festa de religação genética e é surpreendente que se presuma que tenha ocorrido por processos darwinianos num espaço de tempo tão curto. Este problema é acentuado quando se considera que a maioria das novidades anatómicas exclusivas dos cetáceos aquáticos (Pelagiceti) surgiram durante apenas alguns milhões de anos – provavelmente dentro de 1-3 milhões de anos.

As equações da genética populacional prevêem que – assumindo um tamanho populacional efetivo de 100.000 indivíduos por geração e um tempo de rotação de gerações de 5 anos (de acordo com os cálculos de Richard Sternberg e com base nas equações de genética populacional aplicadas no artigo de Durrett e Schmidt), que pode-se razoavelmente esperar que duas mutações coordenadas específicas alcancem a fixação no período de cerca de 43,3 milhões de anos.

Quando se considera a magnitude da festa da engenharia, verifica-se que tal cenário é desprovido de credibilidade. As baleias necessitam de um sistema intra-abdominal de troca de calor em contracorrente (os testículos estão dentro do corpo bem próximo aos músculos que geram calor durante o nado), elas precisam possuir uma vértebra esférica porque a cauda tem que se mover para cima e para baixo em vez de lateralmente.

Por outro lado, exigem uma reorganização do tecido renal para facilitar a ingestão de água salgada, requerem uma reorientação do feto para o parto debaixo de água, requerem uma modificação das glândulas mamárias para a amamentação de jovens sob água, os membros anteriores têm de ser transformados em barbatanas, os membros posteriores têm de ser substancialmente reduzidos, necessitam de um surfactante pulmonar especial (o pulmão tem de voltar a expandir-se muito rapidamente ao subir à superfície), etc.

Com esta nova descoberta fóssil, no entanto, datada de 49 milhões de anos atrás (tenha em mente que Pakicetus viveu há cerca de 53 milhões de anos), isso significa que as primeiras baleias totalmente aquáticas datam agora da época em que as baleias ambulantes (Ambulocetus) apareceram pela primeira vez. Isto reduz substancialmente o intervalo de tempo durante o qual o mecanismo darwiniano tem de realizar inovações de engenharia verdadeiramente radicais e religações genéticas para talvez apenas cinco milhões de anos – ou talvez até menos. Também sugere que esta baleia totalmente aquática existia antes de seus ancestrais arqueocetídeos semiaquáticos, anteriormente considerados.

Outro dia; mais um dia ruim para o darwinismo.