Em Defesa do Design Inteligente

Início » Posts etiquetados como 'evolucionismo'

Arquivo da tag: evolucionismo

Camuflagem e Mimetismo.

Por Canal Inteligentista Douglas Fagner 

Características de alta complexidade estão envolvidas nos fenômenos biológicos da camuflagem e do mimetismo, induzindo adeptos da teoria da evolução a elaborar explicações naturalistas baseadas em seleção natural e mutacionismo, levando a hipóteses como a da evolução convergente. No entanto, os processos e mecanismos necessários para se produzir a extrema complexidade de fenômenos como a camuflagem e o mimetismo constituem-se em obstáculo, e não em evidência, às explicações naturalistas. Uma análise científica despida de preconceito, demonstra que o mimetismo e a camuflagem podem representar evidências consideráveis em favor da Teoria do Design Inteligente.


Inscreva-se no canal.

Pelo Facebook

Pelo Twitter

Apoie nosso trabalho

Site

 

Anúncios

Micro RNA – As primeiras previsões da evolução.

Por Darwins Predictions – Cornelius Hunter

[Obs: Texto adaptado a partir do original – O texto original não tem imagens]

 

MiRNA_JRH.jpg

Os genes possuem informações que são usadas para construir moléculas de proteína e RNA que fazem várias tarefas na célula. Um gene é copiado em um processo conhecido como transcrição. No caso de um gene que codifica a proteína, a transcrição é editada e convertida em uma proteína em um processo conhecido como tradução. Tudo isso é guiado por elaborados processos regulatórios que ocorrem antes, durante e após essa sequência de transcrição, edição e tradução.

Por exemplo, trechos de nossos DNA, que foram considerados de pouca utilidade, têm um papel regulador importante. Este DNA é transcrito em vertentes de cerca de 20 nucleótidos, conhecido como micro RNA. Esses pequenos trechos se ligam e interferem com os transcritos de RNA – cópias de genes de DNA – quando a produção do gene precisa ser retardada.

Os Micro RNAs também podem ajudar a modificar o processo de tradução, estimulando o dimensionamento de quadros ribossômico programado. Dois microRNAs se juntam à transcrição de RNA resultando em uma forma de estrutura de RNA de pseudoknot, ou triplex, que faz com que o quadro de leitura ocorra. (Belew)

Os MicroRNAs não vêm apenas do DNA de uma célula. Os MicroRNAs também podem ser importados de células próximas, permitindo assim que as células se comuniquem e se influenciem mutuamente. Isso ajuda a explicar como as células podem se diferenciar em um embrião crescente de acordo com sua posição dentro do embrião. (Carlsbecker)

Os Micro RNAs também podem vir dos alimentos que comemos. Em outras palavras, o alimento não contém apenas carboidratos, proteínas, gorduras, minerais, vitaminas, etc; também contém informações – na forma desses fragmentos regulatórios de micro RNA – que regulam a produção de genes. (Zhang)

Enquanto os micro RNAs regulam a produção de proteínas, os próprios micro RNAs também precisam ser regulados. Portanto, existe uma rede de proteínas que controlam rigorosamente a produção de micro RNA, bem como a remoção deles. “Apenas a pura existência desses reguladores exóticos“, explicou um cientista, “sugere que nossa compreensão sobre as coisas mais básicas – como a forma como uma célula se liga e desliga – é incrivelmente ingênua.” (Hayden)

Duas predições básicas que a teoria evolutiva faz em relação aos micro RNAs são que (i) como toda a biologia, surgiram gradualmente através de variações biológicas ocorrendo aleatoriamente (como mutações) e (ii) como conseqüência dessa origem evolutiva, os micro RNAs devem formar um padrão que se aproxima do padrão de descendência comum da evolução. A ciência atual falsificou essas duas previsões.

É improvável que os micro RNAs tenham evoluído gradualmente através de mutações aleatórias, pois são necessárias muitas mutações. Sem a existência prévia de genes e o processo de síntese proteica, os micro RNAs seriam inúteis. E sem a existência prévia de seus processos regulatórios, os micro RNAs causariam estragos.

Dado o fracasso da primeira previsão, não é surpreendente que a segunda previsão também tenha falhado. As sequências genéticas de micro RNA não se enquadram no padrão de descendência comum esperado. Ou seja, quando comparados entre diferentes espécies, os micro RNAs não se alinham com a árvore evolutiva. Como um cientista explicou: “Olhei para milhares de genes de micro RNA e não consigo encontrar um único exemplo que apoie a árvore [evolutiva] tradicional“. (Dolgin)

Embora existam dúvidas sobre esses novos dados filogenéticos, “o que sabemos nesta fase“, explicou outro evolucionista, “é que temos uma incongruência muito séria“. Em outras palavras, diferentes tipos de dados relatam árvores evolutivas muito diferentes. O conflito é muito maior que as variações estatísticas normais.

 

treeoflifefo.jpg

 

Tem que existir“, acrescentou outro evolucionista, “outras explicações“. Uma explicação é que os micro RNAs evoluem de maneira inesperada. Outra é que a árvore evolutiva tradicional está errada. Ou os evolucionistas podem considerar outras explicações. Mas, em qualquer caso que seja, os micro RNAs são mais um exemplo de evidências que não se encaixam nas expectativas evolutivas. Mais uma vez, a teoria precisará ser modificada de forma complexa para se adequar às novas descobertas.

Entretanto, os cientistas estão descobrindo que a imposição do padrão de descendência comum, onde os micro RNAs devem ser conservados entre as espécies, está dificultando a pesquisa científica:

Esses resultados destacam as limitações que podem resultar da imposição de que os miRNAs sejam conservados nos organismos. Esses requisitos, por sua vez, resultarão em nossos miRNAs de organismos genuínos ausentes e talvez possam explicar por que muitos destes miRNAs novos não foram previamente identificados. (Londin)

A teoria evolutiva vem limitando a ciência. Embora o padrão de descendência comum tenha sido o guia desde os estudos iniciais do micro RNA, esses pesquisadores “se libertaram” dessa restrição, e isso está levando a um bom progresso científico:

Nos primeiros dias de campo do miRNA, houve uma ênfase na identificação de miRNAs que são conservados em organismos… No entanto, miRNAs de espécies específicas também foram descritos e caracterizados como sendo miRNAs que estão presentes apenas em uma ou poucas espécies do mesmo gênero. Portanto, aplicar um requisito de conservação de organismos durante as pesquisas com miRNA é uma barreira que limita o número de miRNAs potenciais que podem ser descobertos, deixando organismos e linhagens específicas de miRNAs ocultos. Em nosso esforço para caracterizar ainda mais o repertório de miRNA humano, nos desprendemos do requisito de conservação… Esses achados sugerem fortemente, a possibilidade de uma ampla gama de miRNA-ome de espécies específicas que ainda não foi caracterizado. (Londin)

As duas predições do micro RNA foram falsificadas e, de forma surpreendente, a hipótese evolutiva prejudicou a pesquisa científica de como os micro RNAs funcionam.

 


 

Referencias

Belew, Ashton T., et. al. 2014. “Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway.” Nature 512:265-9.

Carlsbecker, Annelie, et. al. 2010. “Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate.” Nature 465:316-21.

Dolgin, Elie. 2012. “Phylogeny: Rewriting evolution.” Nature 486:460-2.

Hayden, Erika Check. 2010. “Human genome at ten: Life is complicated.” Nature464:664-7.

Londin, Eric, et. al. 2015. “Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs.” Proc Natl Acad Sci USA112:E1106-15.

Zhang, L., et. al. 2012. “Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA.” Cell Research 22:107-26.

Novo Estudo Sobre a Evolução da Fotossíntese.

Por Darwin’s God Cornelius Hunter

[Obs: Texto adaptado – Links em inglês]

Uma “Capacidade Muito Avançada”.

debi-lóide-2-sinopse-elenco-e-estreia-3.jpg

Como exatamente a evolução é um fato, quando segundo o jornal científico número dois do mundo: “como e quando as cianobactérias evoluíram a capacidade de produzir oxigênio através da fotossíntese é mal compreendido“? Ou, como o evolucionista Robert Blankenship admitiu: “Toda a questão da origem das cianobactérias tem sido um mistério há tempos, porque elas simplesmente apareceram fora da árvore da vida, com essa capacidade muito avançada de fazer a fotossíntese oxigenada sem quaisquer antepassados aparentes“.

Se as cianobactérias que fazem a fotossíntese, “surgiram” com essa “capacidade muito avançada” e “sem antepassados aparentes“, e se como e quando elas evoluíram a fotossíntese “é pouco compreendido“; então como é que os evolucionistas estão tão certos de que a evolução é um fato?

O que estou perdendo aqui?

Não é como se a fotossíntese fosse uma capacidade tangencial ou um evento menor na assim chamada “história evolutiva” da vida. Como disse o principal escritor sobre ciências da atualidade, Charles Q. Choi: “Um dos momentos mais cruciais da história da Terra foi a evolução da vida fotossintética que infundiu o ar com o oxigênio no qual praticamente toda a vida complexa do planeta agora é dependente“.

Também não é como se a fotossíntese fosse uma capacidade simples, sem necessidade de explicação de como ela poderia ter surgido por mutações aleatórias. Qualquer um que tenha estudado a fotossíntese mesmo que superficialmente sabe que é algo incrivelmente complexo. E para aqueles que estudaram em maior detalhe, só fica pior. As máquinas moleculares e suas funções requintadas, finamente sintonizadas, são verdadeiramente surpreendentes. Isso não “simplesmente acontece“.

Mesmo os evolucionistas, que estão sempre tentando explicar o quão fácil seria para as maravilhas da biologia surgirem por acaso, admitem a complexidade da fotossíntese. Como Blankenship colocou: a fotossíntese é uma “capacidade muito avançada“. Da mesma forma, Woodward Fischer concordou que a evolução da fotossíntese seria “muito desafiadora“:

Demorou um desdobramento substancial de tempo evolutivo antes da fotossíntese oxigenada se desenvolver, talvez porque, como sabemos, era uma bioquímica muito desafiadora de se desenvolver.

Tão pouco seria como se a evidência que temos sugerisse qualquer tipo de desenvolvimento evolutivo direto da fotossíntese.

Se a evolução é verdadeira, então devemos lançar novas notícias falsas da evolução, incluindo incríveis convergências, transferências; fusões maciças, horizontais ou laterais de genes. Arredonde os suspeitos habituais:

As relações filogenéticas destes procariontes sugerem que a evolução da respiração aeróbia provavelmente ocorreu várias vezes. Isto, juntamente com a evidência de que o sistema fotossintético moderno, aparentemente surgiu através da transferência lateral de genes e a fusão de dois sistemas fotossintéticos.

Isso é absurdo. A convergência, a transferência horizontal de genes e a fusão constituem mecanismos para corrigir o problema de que as evidências científicas contradizem a teoria evolucionista. Isso não faz sentido.

Mas fica pior.

Os evolucionistas não só são forçados a extrair de seu exército de mecanismos explicativos falsos, como também ficam com o proverbial “elo perdido“. O problema é, de onde veio a fotossíntese? Não poderia ter vindo do suposto antepassado comum da descida, e “apenas apareceu” com esta “capacidade muito avançada”. Assim, os evolucionistas têm que introduzir sua história da transferência horizontal do gene.

Mas de onde?

De onde surgiu a incrível bateria de genes – que só surgiria para se unir e criar a incrível capacidade de fotossíntese de todos os tempos? Convenientemente para os evolucionistas – e aqui está uma das belezas de ser um evolucionista – eles podem nunca saber. Como no jardineiro de Flew, os evolucionistas estão certos de que alguns organismo, que seriam “elos perdidos”, de alguma forma tiveram a fotossíntese instalada e funcional, ou só passaram a meramente ter os genes cruciais ao seu redor, mas nós provavelmente nunca iremos observar esse organismo porque ele há muito se tornou extinto.

Oh, como é conveniente. Algum organismo misterioso a fez. Nunca saberemos como a fotossíntese evoluiu porque o organismo onde ela surgiu, há muito se extinguiu, há bilhões de anos. Desde então, ele apenas, felizmente, passou a tecnologia para outros organismos ao redor, para também terem; como as cianobactérias. Choi e Fischer explicam:

O fato das Oxyphotobacterias possuírem o complexo aparelho para a fotossíntese oxigenada enquanto seus parentes mais próximos não, sugere que as Oxyphotobacterias possam ter importado os genes para a fotossíntese de outro organismo, através de um processo conhecido como transferência lateral de genes. Continua sendo um mistério qual foi a origem desses genes, “e porque aconteceu há muito tempo, é bem provável que o grupo pode realmente ter sido extinto“, disse Fischer.

Posso ser um evolucionista também?

A fotossíntese é crucial para a vida e é incrivelmente complexa, os evolucionistas não têm idéia de como ela poderia ter evoluído, ela não se encaixa no modelo evolucionista de descendência comum e “apareceu” sem uma pista de onde ela veio, os evolucionistas são forçados a fazer uma longa e apenas (contar) história para tentar explicá-la, sua história não pode ser falsificada porque a origem da fotossíntese há muito desapareceu e, além disso, os evolucionistas insistem que sua teoria é um fato, além de qualquer dúvida razoável.

Isso é hilário. É como uma paródia do Monte Python. A evolução perde todas as batalhas, mas consegue vencer a guerra porque, afinal, está certa.

A religião conduz a ciência, e é o que importa.

Barulho e Fúria no Laboratório de Microbiologia.

O microbiologista Didier Raoult, tempos atrás, proporcionou a fúria nos neo darwinistas.

 

264517963_1280x720.jpg

 

Resumo

Aos 59 anos, Didier Raoult é o microbiologista mais produtivo e influente da França, liderando uma equipe de 200 cientistas e estudantes da Universidade de Aix-Marseille. Ele descobriu ou co-descobriu dezenas de novas bactérias, e em 2003, atordoou colegas com um vírus de tamanho recorde, chamado Mimivirus, o primeiro membro de uma família que lança uma nova luz intrigante sobre a evolução dos vírus e da árvore da vida. Controverso e franco, Raoult publicou no ano passado um livro de ciência popular que declara que a teoria da evolução de Darwin está errada. E ele foi temporariamente proibido de publicar em uma dúzia de revistas de microbiologia importantes em 2006. Cientistas do laboratório de Raoult dizem que não querem trabalhar em nenhum outro lugar. No entanto, Raoult também é conhecido por suas inimizades e seu desdém por aqueles que discordam dele.

 


Science 02 Mar 2012:
Vol. 335, Issue 6072, pp. 1033-1035
DOI: 10.1126/science.335.6072.1033


 

Obs: O artigo completo da AAAS é pago.

A Falácia da Vantagem Evolutiva.

By Evolution News|@DiscoveryCSC

[Texto Adaptado – O artigo contem links em inglês – Imagem do EnV]

 

Evolutionary-Advantage-Fallacy.jpg

Considere a seguinte história:

Por que existem dois modos de transporte para realizar a mesma função? Bicicletas e automóveis aparentemente surgiram de forma independente. Enquanto ambos fornecem transporte, o automóvel parece ter uma clara vantagem em milhas percorridas por unidade de energia. Nossa análise sugere uma possível explicação para esta relação aparente entre a entrada de energia e o mecanismo. Quando o carro e a bicicleta estão viajando a cerca de 10 km/h, a proporção de gasto de energia por metro é aproximadamente a mesma [para fins ilustrativos]. Quando as condições sob as quais o transporte deve ocorrer a uma velocidade mais elevada, são encontradas, o mecanismo do motor a gasolina pode ter sido selecionado pela sua vantagem cinética. Por outro lado, quando as condições requerem uma velocidade de 10 km/h ou menos, o mecanismo do pedal pode ter sido selecionado para outras possíveis vantagens resultantes da sua simplicidade estrutural e funcional.

Nós rimos deste conto bobo, mas os evolucionistas muitas vezes empregam este tipo de raciocínio de uma forma muito séria: se algo é vantajoso, a natureza deve ter selecionado! Isso porque a teoria evolucionista proíbe qualquer apelo para causas inteligentes; o que os cientistas observam – não importa quão intrincado – deve ter sido projetado sem um designer e selecionado sem um seletor.

Aqui está um exemplo recente do PLOS ONE. Dois cientistas do Departamento de Computação e Biologia de Sistemas da Universidade de Pittsburgh propuseram exatamente o mesmo raciocínio que nossa história, exceto que suas máquinas são muito menores. Mas a mesma falácia se aplica. Na verdade, adaptamos nossa história de uma linguagem semelhante a seu paper, “A comparação biofísica dos mecanismos de bombeamento de prótons impulsionados pelo ATP, sugere uma vantagem cinética para o processo rotatório dependendo da relação de acoplamento“. Observe as semelhanças:

Bombas de prótons movidas a ATP, que são críticas para o funcionamento de uma célula, mantêm os níveis de pH citosólico e organelar dentro de uma estreita faixa funcional. Estas bombas empregam dois mecanismos muito diferentes: um mecanismo rotativo elaborado, usado pelas bombas V-ATPase H+ e um mecanismo de acesso alternativo mais simples usado pelas bombas P-ATPase H+. Por que dois mecanismos diferentes são usados para executar a mesma função? A análise sistemática, sem ajuste de parâmetros, de modelos cinéticos de acesso rotativo alternado e outros possíveis mecanismos sugerem que, quando a proporção de prótons transportados por ATP hidrolisado excede a um, o transporte de prótons, um por vez, pelo mecanismo rotativo, é mais rápido do que outros mecanismos possíveis em uma ampla gama de condições de condução. Quando a relação é um, não há diferença intrínseca na paisagem de energia livre entre os mecanismos, e, portanto, todos os mecanismos podem exibir o mesmo desempenho cinético. Todas as bombas rotativas conhecidas têm uma relação H+: ATP superior a um, e todas as bombas de protões com acesso alternativo conhecidas por ATP têm uma relação de um. Nossa análise sugere uma possível explicação para essa relação aparente entre a relação de acoplamento e o mecanismo. Quando as condições sob as quais a bomba deve funcionar permitem uma relação de acoplamento superior a um, o mecanismo rotativo pode ter sido selecionado pela sua vantagem cinética. Por outro lado, quando as condições requerem uma relação de acoplamento de um ou menos, o mecanismo de acesso alternativo pode ter sido selecionado para outras possíveis vantagens resultantes da sua simplicidade estrutural e funcional. [Ênfase adicionada.]

Eles estão falando, atenção, sobre uma das máquinas moleculares mais incríveis em toda a vida: o motor rotativo ATP sintase. Nós o caracterizamos em uma animação. E como já escrevemos, ele vem em dois tipos: A F0F1-ATPase mitocondrial que sintetiza ATP a partir de uma força motora do próton, e V-ATPase vacuolar, que acidifica os vacúolos com um mecanismo similar que funciona no sentido inverso. Basta olhar para estas máquinas em operação… Elas gritam design inteligente!

A bomba de prótons P-ATPase a que se referem não é menos inspiradora. Embora use um mecanismo menos eficiente (um próton por um ATP), ela sustenta funções celulares críticas. As brânquias do salmão jovem, por exemplo, usam a bomba de sódio-potássio (Na+/K+ P-ATPase) para se adaptarem à água do mar quando saem dos seus rios natais e utilizam as bombas no sentido inverso ao regressar. Esta animação mostra que o design, enquanto mais simples do que a ATP sintase, é elegante e eficaz, como a bicicleta em comparação com o carro. Aqui no Evolution News, o médico Howard Glicksman descreveu as muitas funções importantes que esta bomba realiza no corpo humano.

Agora que sabemos sobre as duas máquinas discutidas no artigo do PLOS ONE, os autores nunca descrevem como elas surgiram por mutações aleatórias e seleção natural? Claro que não. Para eles, basta dizer: “Elas são vantajosas; portanto, elas evoluíram“. Ponto final. De fato, os evolucionistas duplicam o poder milagroso da seleção natural ao dizer isso, plenamente conscientes da complexidade dessas máquinas:

Dois mecanismos muito distintos, que muito provavelmente evoluíram independentemente, são empregados para bombas H+ movidas a ATP: o mecanismo rotativo da V-ATPase e o mecanismo alternativo de acesso usado pelas P-ATPases (Fig. 1). A V-ATPase significativamente mais complexa, consiste em cadeias de proteína 25-39 em comparação com um polipéptido monomérico ou homodimérico para a P-ATPase. O mecanismo de operação para a V-ATPase é também mais elaborado, consistindo em um mecanismo rotativo do tipo motor elétrico. Em contraste, a P-ATPase opera alternando entre duas conformações (E1 e E2) semelhantes à maioria dos mecanismos alostéricos.

Devemos suspirar (de forma negativa) diante de tanta credulidade num artigo científico. No entanto, os dois autores, com mais dois colegas, publicaram um artigo semelhante na Proceedings of the National Academy of Sciences (PNAS) no ano passado: “A comparação biofísica dos mecanismos de síntese de ATP, mostra uma vantagem cinética para o processo rotativo“. A mesma falácia é central em todo o seu trabalho: “Nossa análise mostra que o mecanismo rotativo é mais rápido do que outros mecanismos possíveis, particularmente em condições desafiadoras, sugerindo uma possível vantagem evolutiva“.

Por que a evolução selecionou dois mecanismos muito diferentes para as bombas de prótons movidas a ATP? Aqui nós exploramos uma possível consideração: a diferença de cinética, isto é, a taxa de bombeamento H+, entre os dois mecanismos, com base em nosso estudo recente da cinética de síntese de ATP. Um mecanismo que pode bombear protões mais rapidamente, nas mesmas condições (mesmo custo bioenergético), pode ser capaz de responder às demandas celulares e alterar as condições mais rapidamente. Além disso, um mecanismo mais rápido exigiria um menor potencial de condução (custo bioenergético) para obter a mesma taxa de bombeamento em comparação com um mecanismo mais lento. Tal mecanismo pode oferecer uma vantagem em termos de sobrevivência, particularmente quando a diferença de taxas é grande e num ambiente altamente competitivo. Presumivelmente, tal mecanismo estaria sob pressão de seleção positiva.

Os autores não passam apenas por essas afirmações, como se fossem abordar questões mais rigorosas. Não; a Falácia da Vantagem Evolutiva é central para toda a sua tese. Contamos a palavra vantagem 25 vezes, geralmente em um contexto evolutivo: em particular, vantagem evolutiva ou vantagem seletiva oito vezes. Aqui ela está duas vezes na discussão conclusiva:

Por que existem dois mecanismos diferentes, um mecanismo rotativo e um mecanismo alternativo de acesso, para bombas de prótons movidas a ATP? Muitos fatores contribuem para a aptidão evolutiva geral, e aqui nos concentramos no comportamento cinético, que é passível de análise sistemática… Estes resultados sugerem que quando as condições de condução são de modo que uma relação de acoplamento acima de um é suficiente para o funcionamento viável, o mecanismo rotativo pode ter uma vantagem seletiva. No entanto, quando um processo requer uma relação de acoplamento de um, para o funcionamento viável, o mecanismo de acesso alternativo pode ter uma vantagem seletiva, devido à sua simplicidade e ao custo correspondente mais baixo da síntese de proteínas.

Outro caso da falácia da vantagem evolutiva aparece no PNAS. Wei Lin e outros outros colegas internacionais pensam que as bactérias evoluíram magnetotaxia porque teria sido vantajoso para elas. “A origem precoce da magnetotaxia teria proporcionado vantagens evolutivas em lidar com os desafios ambientais enfrentados pelos micro organismos na Terra primitiva“, dizem eles. Só porque o “geodinamo arqueano era suficiente para suportar a magnetotaxia“, não significa que as bactérias criem genes e comportamentos para usá-los. Isso é como dizer que água cria peixe.

São esses casos isolados que estamos escolhendo? Uma pesquisa rápida no Google Scholar para “vantagem evolutiva” produz mais de 32.000 acessos. Em nossa experiência, esta é uma frase freqüentemente usada que geralmente é desprovida de qualquer descrição detalhada de como mutações aleatórias e seleção natural poderia ter alcançado as referidas vantagens. O silogismo simplista, “É vantajoso, portanto, evoluiu“, não é uma teoria científica. É mera salada de palavras.

 

 

 

Não existe linhagem específica em biologia. – Primeiras previsões da evolução.

Por Darwins Predictions – Cornelius Hunters

[ Titulo e texto adptado ]


journal.pbio.1000112.g006.png

A evolução espera que as espécies caiam em um padrão de descida comum. Portanto, uma linhagem particular não deve ter projetos altamente diferenciados, únicos e complexos, quando comparados com espécies vizinhas. Mas isso tem sido cada vez mais o caso, tanto que este padrão agora tem seu próprio nome: biologia de linhagem específica.

Por exemplo, os fatores de transcrição são proteínas que se ligam ao DNA e regulam os genes que são expressos. No entanto, apesar da importância destas proteínas, os seus locais de ligação ao DNA variam dramaticamente entre espécies diferentes. Como um relatório explicou, “supôs-se amplamente que, tal como as sequências dos próprios genes, estes locais de ligação do fator de transcrição seriam altamente conservados ao longo da evolução. No entanto, este não é o caso em mamíferos.(Rewiring of gene regulation across 300 million years of evolution)

Os evolucionistas foram surpreendidos quando se verificou que os locais de ligação do fator de transcrição não eram conservados entre ratos e homens, (Kunarso et. al.) entre vários outros vertebrados, e mesmo entre diferentes espécies de levedura. Assim, agora se acredita que a evolução realizou uma maciça, “restruturação” de linhagens especificas  de redes celulares reguladoras. (Pennacchio and Visel)

Há muitos outros exemplos de biologia de linhagem específica. Embora as flores tenham quatro partes básicas: sépalas, pétalas, estames e carpelos, a trombeta do narciso é fundamentalmente diferente e deve ser uma “novidade” evolutiva (os cientistas de Oxford dizem que trombetas em narcisos são “órgãos novos”) das milhares de espécies de baratas, Saltoblattella montistabularis da África do Sul é a única que salta. Com as suas patas traseiras com mola, ela acelera a 23 g e salta até aos funis de gramas. (Picker, Colville and Burrows)

Um importante componente do sistema imunológico, altamente conservado entre os vertebrados, está misteriosamente ausente no bacalhau do Atlântico, Gadus morhua. (Star, et al.) As algas marinhas, Ectocarpus siliculosus, tem enzimas únicas para a biossíntese e outras tarefas. (Cock) E as algas Bigelowiella natans tem dez mil genes únicos e máquinas de emenda de genes altamente complexas, nunca vistas antes em um organismo unicelular. Foi como um evolucionista explicou, “sem precedentes e verdadeiramente notável para um organismo unicelular“. (Tiny algae shed light on photosynthesis as a dynamic property)

Outro exemplo fascinante de biologia de linhagem específica, são as muitas novidades morfológicas e moleculares peculiares encontradas em protistas unicelulares dispares e não relacionadas. Como um estudo concluiu: “Tanto os euglenozoários como os alveolados têm a reputação de “fazer as coisas à sua maneira”, ou seja, desenvolver caminhos aparentemente únicos, para construir estruturas celulares importantes ou realizar tarefas moleculares críticas para a sua sobrevivência. Por que tais pontos críticos para a evolução de novas soluções para problemas, devam existir na árvore da vida, não está totalmente claro.” (Lukes, Leander and Keeling, 2009a) Ou como um evolucionista exclamou: “Isso é totalmente louco.(Lukes, Leander and Keeling, 2009b)


Referencias:

  • Cock, J., et al. 2010. “The Ectocarpus genome and the independent evolution of multicellularity in brown algae.” Nature 465:617-621.
  • Kunarso G., et. al. 2010. “Transposable elements have rewired the core regulatory network of human embryonic stem cells.” Nature Genetics 42:631-634.
  • Lukes, J., B. Leander, P. Keeling. 2009. “Cascades of convergent evolution: the corresponding evolutionary histories of euglenozoans and dinoflagellates.” Proceedings of the National Academy of Sciences 106 Suppl 1:9963-9970.
  • Pennacchio, L., A. Visel. 2010. “Limits of sequence and functional conservation.” Nature Genetics 42:557-558.
  • Picker, M., J. Colville, M. Burrows. 2012. “A cockroach that jumps.” Biology Letters 8:390-392.
  • Star, B., et. al. 2011. “The genome sequence of Atlantic cod reveals a unique immune system.” Nature 477:207–210.

 

  • “Tiny algae shed light on photosynthesis as a dynamic property.” 2012. ScienceDaily November 28. http://www.sciencedaily.com­ /releases/2012/11/121128132253.htm

Sinais de longa distância protegem o cérebro de infecções virais que entram pelo nariz.

By Science Daily 

[Obs: Texto adaptado]

Em 10 de fevereiro de 2014 o Science
Daily publicou.

Fonte:
Sociedade Americana de Microbiologia.

Resumo:
O cérebro contém um sistema de defesa que impede que pelo menos dois vírus não relacionados – e possivelmente muitos mais – invadam o cérebro em geral.

 

 

olfato.jpg

 

 

A mucosa olfativa no nariz pode servir como um condutor para uma série de vírus entrarem no cérebro, incluindo a raiva, poliomielite e vírus da gripe. No entanto, raramente ocorrem infecções no sistema nervoso central. Pesquisas sugerem que, em resposta à infecção viral, as células no bulbo olfatório liberam moléculas sinalizadoras de longa distância que informam as células de partes não infectadas do cérebro, para produzirem interferão antiviral; uma primeira linha de defesa contra vírus invasores.
O cérebro contém um sistema de defesa que impede que pelo menos dois vírus não relacionados – e possivelmente muitos mais – invadam o cérebro em geral. A pesquisa foi publicada on-line antes da impressão no Journal of Virology.

Nosso trabalho aponta para a capacidade notável do sistema imunológico, mesmo dentro do cérebro, nos proteger contra vírus oportunistas“, diz Anthony van den Pol, da Universidade de Yale, autor do estudo.

A pesquisa explica um mistério antigo. A mucosa olfativa no nariz pode servir como um condutor para uma série de vírus entrarem no cérebro, incluindo a raiva, poliomielite e vírus da gripe. No entanto, raramente ocorrem infecções no sistema nervoso central. O mecanismo responsável pela proteção do cérebro contra  vírus que invadem com sucesso o bulbo olfatório (OB), o primeiro local de infecção na mucosa nasal, permanece esquivo.

Van den Pol e seus colegas descobriram que, em resposta à infecção viral, as células no bulbo olfatório liberam moléculas sinalizadoras de longa distância que informam células, em partes, não infectadas do cérebro, para produzirem interferão antiviral, uma primeira linha de defesa contra invasão de vírus.

No estudo, ratos normais expurgaram a infecção, enquanto ratos sem receptores para as moléculas iniciais de sinalização, sucumbiram à medida que os vírus se espalharam pelo cérebro, provando o papel crítico dessas moléculas.

Estas moléculas sinalizadoras são diferentes dos neurotransmissores regulares. Van den Pol observa que durante a sinalização neuronal, os neurotransmissores liberados por uma célula, viajam através de apenas 20 nanômetros de sinapse à próxima célula nervosa. No entanto, as moléculas de sinalização de longa distância difundem até 15 milímetros.

Essa distância é quase um milhão de vezes maior do que a distância em uma sinapse“, diz ele.

O sucesso do sistema imunológico no bloqueio de dois vírus não relacionados, a saber, vírus da estomatite vesicular e citomegalovírus, sugere que nossos resultados podem generalizar a muitos outros vírus que podem entrar no cérebro através do nervo olfativo“, diz van den Pol.

[Ênfases do blog] 


Journal Reference:

  1. A. N. van den Pol, S. Ding, M. D. Robek. Long distance interferon signaling within the brain blocks virus spread. Journal of Virology, 2014; DOI: 10.1128/JVI.03509-13

Processo de tomada de decisão de vírus poderia levar a novos tratamentos com antibióticos.

By Science Daily

[ Obs: Texto adaptado a partir do original – Este blog não defende o evolucionismo, ao contrário, defende o design inteligente, sendo assim, não está de acordo com a assertiva não justificada do artigo a seguir, no tocante ao paradigma vigente, com seu profundo viés materialista, naturalista, fisicalista – A primeira imagem é do SD ] 

 

 

170206130405_1_540x360.jpg
O fago lambda prefere destruir a bactéria E. coli, o que o torna o alvo principal para os pesquisadores. Dr. Lanying Zeng, à esquerda, e seu estudante de pós-graduação Jimmy Trinh desenvolveram um sistema repórter de fluorescência de quatro cores para rastreá-lo no nível de vírus único.

 

 

Os seres humanos enfrentam centenas de decisões todos os dias. Mas não estamos sozinhos. Mesmo os vírus mais ínfimos também tomam decisões, e os cientistas estão pesquisando como eles fazem isso, para ajudar a levar a melhores tratamentos para algumas doenças. Uma equipe de cientistas descobriu como o fago lambda decide quais ações tomar em seu hospedeiro, a bactéria E. coli.

Em um estudo publicado em 6 de fevereiro na revista Nature Communications, a Dr. Lanying Zeng e sua equipe no Texas A & M AgriLife Research descobriram como o fago lambda decide quais ações tomar em seu hospedeiro, a bactéria E. coli.

Um fago é um vírus que infecta e se replica dentro de uma bactéria. Os fagos foram descobertos há cerca de 100 anos, mas recentemente cientistas começaram a estudar como eles podem ser usados para atacar bactérias causadoras de doenças, especialmente as cepas que se tornaram mais resistentes aos antibióticos.

Os fagos são muito diversos e numerosos – com números na casa dos bilhões, de acordo com vários relatórios na Biblioteca Nacional dos EUA – por isso os pesquisadores estão agora na trilha de fagos que têm potencial para curar doenças bacterianas específicas.

O fago lambda, por exemplo, prefere destruir a bactéria E. coli, o que o torna alvo principal para os pesquisadores. No rastreamento desse alvo, o estudante de pós-graduação Zeng Jimmy Trinh desenvolveu um sistema repórter fluorescente de quatro cores para rastreá-lo no nível de vírus único. Isso foi combinado com modelos computacionais desenvolvidos pelo Dr. Gábor Balázsi, engenheiro biomédico e colaborador da Stony Brook University, em Stony Brook, Nova York, “para desvendar tanto as interações entre os fagos quanto a forma como os fagos individuais determinam” o destino de uma célula.

O que eles descobriram não era diferente do processo decisório dos humanos. Às vezes, o fago lambda coopera com os outros. Às vezes compete.

Em vez de apenas a célula tomar uma decisão, descobrimos que os próprios DNA fágicos também tomam decisões“, disse Zeng.

 

f-d-0af319c1f63d9f6a49d9b6245463fc8fea256fd364c6a8e427999d1d+IMAGE_THUMB_POSTCARD+IMAGE_THUMB_POSTCARD.jpg

 

Através do processo que desenvolveram, os cientistas foram capazes de determinar que o tempo teve um papel na tomada de decisões.

Zeng explicou que alguns fagos podem ter dois ciclos de reprodução: lítico e lisogênico.

No ciclo lítico, cópias completas do vírus são feitas dentro de uma célula, digamos uma célula de E. coli. Quando a célula infectada com fagos fica cheia dos vírus de replicação, ela explode e é destruída. No ciclo lisogênico, o DNA do fago vive como parte da própria bactéria e ambos continuam a reproduzir-se como um só. Em resumo, a lise envolve a competição, enquanto a lisogenia envolve cooperação, disse ela.

Assim, uma chave para usar fagos para destruir bactérias, Zeng disse, é entender como e quando um fago decide a via lítica [ “go lytic” ] sobre o patógeno.

Digamos que você tem dois fagos lambda que infectam uma célula“, disse ela. ” Cada DNA de fago dentro da célula é capaz de tomar uma decisão. Queremos saber como eles tomam uma decisão, se um é mais dominante do que o outro, se eles têm alguma interação e competem para ver quem vai ganhar, ou se eles comprometem .

Eles podem até coexistir por algum tempo e depois finalmente escolher uma decisão“, disse ela. “Mas o fago está tomando uma decisão subcelular – e isso é muito importante, pode haver muitas implicações“.

O sistema repórter fluorescente de quatro cores ajudou os pesquisadores a visualizarem que muitos fatores contribuem para a decisão e que “do ponto de vista evolutivo, os fagos querem otimizar sua própria aptidão ou sobrevivência[como dito na observação sobre este artigo, o blog não compactua do paradigma vigente, e sugiro a leitura disto ], disse ela. “Então é por isso que eles escolhem lítico ou lisogênico para maximizar ou otimizar sua sobrevivência.

A equipe identificou alguns dos fatores que levaram à competição e outros que levaram à cooperação.

Zeng disse por que a terapia do fago é um campo crescente para procurar maneiras de tratamento contra as bactérias, os resultados deste estudo ajudarão outros cientistas avançarem em suas pesquisas.

Este é um paradigma para os bacteriófagos“, disse ela. “Quando compreendemos mais o mecanismo da decisão, isso pode levar a mais aplicações e a uma melhor caracterização de outros sistemas“.

 


 

Journal Reference:

  1. Jimmy T. Trinh, Tamás Székely, Qiuyan Shao, Gábor Balázsi, Lanying Zeng. Cell fate decisions emerge as phages cooperate or compete inside their host. Nature Communications, 2017; 8: 14341 DOI: 10.1038/ncomms14341

 

 

 

Compare a arte sublime da natureza com a do homem.

By Evolution News – David Klinghoffer

[Obs: Texto adaptado – O artigo a seguir  possui  links no original em inglês – Imagem do EnV com os devidos créditos.] 

Järise_järv_Saaremaal.jpg

O Science News lança algumas ilustrações impressionantes:

Você já se sentiu pesado por suas posses materiais? A variedade ilimitada de coisas que os seres humanos fabricam – tratores, edifícios, esferográficas, mochilas Hello Kitty – tem um peso sério: uma métrica de 30 trilhões de toneladas; estima um novo estudo. Isso é aproximadamente 50 quilogramas por cada metro quadrado da superfície da Terra.

A “tecnosfera” humana, todos os produtos manufaturados em nossos dias atuais, ultrapassam a biosfera natural em massa e variedade; segundo o geólogo Jan Zalasiewicz da Universidade de Leicester na Inglaterra e o relatório online de colegas em The Anthropocene Review, de 28 de novembro.

Ao que Douglas Axe, autor de  Undeniable: How Biology Confirms Our Intuition That Life Is Designed, responde apropriadamente:

“A “tecnosfera” humana [produtos, materiais feitos pelo homem] ultrapassa a biosfera natural em massa e variedade. Contudo, certamente não em elegância.” https://twitter.com/ScienceNews/status/823954811880083461

Os seres humanos criaram uma arte sublime que, como diz George Steiner memoravelmente, em um breve vídeo que eu recomendei antes, gesticula para mysterium tremendum.

Isso pode ser verdade sobre a música, acima de tudo, o que naturalmente não deixa vestígios. É pura informação, se você quiser chamar assim. No entanto, os seres humanos também criam um monte de lixo, montanhas de feiura. Nosso produto de trabalho total, a “tecnosfera”, supera em massa os seres humanos, em massa, de 60.000 para 1. Grande parte desse material é lixo.

De volume a parte; o contraste com a natureza e sua elegância, é o ponto do Dr. Axe.

Um golfinho ou uma aranha, é uma obra-prima, ao qual ele chama de “coerência funcional“. Qual é o artista mais sublime, o homem ou a natureza? É uma pergunta interessante para um darwinista, se ele for honesto o suficiente para responder de forma franca. Eu tenho uma visão sobre isto, e você provavelmente tem a sua. Podemos conversar sobre isso.

Por que esperaríamos arte em toda a natureza, tendo em conta a premissa de um cosmos sem propósito ou design? O fato de que há alguma coisa para discutir acerca dela toda, onde a natureza pode ser comparada significativamente com Mozart, digamos, ela parece grávida de significado.

Biólogo estupefato com o sapo sem pulmão.

By Evolution News – Cornelius Hunter

[Obs: Texto adaptado – Os links estão no original em inglês – Imagem do EnV com os devidos créditos] 

080407123824_1_540x360.jpg

Por que os biólogos viajam pelo mundo? Eles vão para o fundo do oceano e para o topo das montanhas, para desertos e selvas. A razão é que eles são recompensados por seus esforços. A única regra na biologia é que não existem regras. Tudo é diferente, e em todos os lugares é diferente.

Quando John Ray viajou pela Europa por três anos, de 1663 a 1666, estudando a flora e a fauna, ele descobriu que os organismos e suas interações eram diferentes em toda parte. A biologia é cheia de diversidade, e não faz sentido à luz da evolução.

Considere o Barbourula kalimantanensis, o sapo que não tem pulmões. Estes anfíbios pequenos, elusivos, sem pulmões vivem em rios frios e rápidos (correntezas), profundos, nas florestas tropicais de Bornéu.

Dez anos atrás, David Bickford e sua paciente equipe internacional de biólogos trabalharam duro e longamente para encontrar alguns espécimes para seu estudo.

Bickford e seus colegas tinham uma idéia do que eles estavam procurando, mas eles não tinham ideia, e nenhuma razão para suspeitar, que o sapo de duas polegadas seria sem pulmão. Como Bickford contou:

No começo eu não acreditava que os sapos não tivessem pulmões, mas então, continuamos vendo a evidência se acumulando. Eu fiquei espantado.

Foi tudo uma lição, mais uma vez, na única regra da biologia, e que a exploração parece sempre recompensar:

A única coisa que mais me impressionou e agora é que ainda há grandes estreias – por exemplo, primeiro sapo sem pulmões! – Foi descoberto no campo. Tudo o que você tem a fazer é ir um pouco além do que as pessoas fizeram antes, e – voila! …Há tantas dificuldades no trabalho de campo, e ainda assim continua sendo a minha maior alegria. Tendo o privilégio inegável de ir a esses locais remotos, vendo alguns dos últimos e maiores tesouros que existem na natureza, e em seguida, começar a estudá-los – bem, todos os dias eu me sinto um sortudo.

Acontece que algumas espécies podem renunciar a seus pulmões completamente em seu desenvolvimento embrionário, dadas as condições ambientais adequadas. Este é outro exemplo de adaptação rápida e dirigida, em resposta ao ambiente.

Se tal plasticidade sofisticada de desenvolvimento pudesse ter evoluído – “E oh! Que grande se!” – Ela não forneceria nenhuma melhoria imediata de aptidão, e assim não seria selecionada em prol de. Estaria sujeita a mutações nocivas, e há muito esquecida nos anais da história evolutiva.

É uma adaptação inteligente, que, repetindo, não faz sentido à luz da evolução.

Cruzado em Darwin’s God.

Testando a complexidade irredutível?

Por Evolution News – Ann Gauger

[ Obs:Texto adaptado – Titulo original: #7 of Our Top Stories of 2016: An Engineered “Minimal” Microbe Is Evidence of Intelligent Design – Imagem do EnV com os devidos créditos ]

syn-3-0bmat09-colored

 

 

O artigo a seguir foi publicado originalmente em 24 de março de 2016:

Science Magazine publicou um artigo na semana passada, “Design e síntese de um genoma bacteriano mínimo“, descrevendo a criação de uma bactéria com um genoma “descascado”. O artigo representa vinte anos de trabalho de muitos cientistas, incluindo o célebre bioquímico J. Craig Venter. Eles conseguiram reduzir o genoma quase na metade, de mais de 900 genes para 473, um pouco de cada vez. O papel borrifou pela Internet (ver, por exemplo, artigos da Associated Press e Bloomberg   o link original da AP está dando erro, mas mantive o link da AP, que apenas mostra a pagina da AP,  porque no original deste texto ele ainda está lá)

Por que diabos os pesquisadores farão tal coisa? A esperança é que esta bactéria mínima irá fornecer um veículo útil para a futura biologia sintética, permitindo a produção de medicamentos úteis para tratar doenças.

Mas há outra razão deles gastarem vinte anos neste projeto. É uma tentativa de responder a uma pergunta básica. Qual é a quantidade mínima de informação genética necessária para obter uma célula em funcionamento? Estimativas variaram de 250 a 300 genes, dependendo do tipo de célula e onde eles estão vivendo. Para a bactéria M. mycoides, o ponto de partida de seu trabalho, a resposta parece ser cerca de 470 genes. Os cientistas querem saber a resposta, porquanto a célula simplificada pode permitir que eles desvendem como os genes interagem e o que todos fazem. É mais fácil lidar com 400 genes do que com mais de 900, ou no caso da bactéria comum E. coli, mais de 4.000.

Este trabalho já produziu alguns resultados interessantes. Eles ainda não sabem o que 30% do genoma reduzido faz, apenas que os genes são essenciais. Em segundo lugar, os genes que parecem ser não essenciais por si só, podem tornar-se essenciais quando outro gene é excluído. Claramente, existem interações complexas acontecendo entre os 473 genes.

Tudo isso leva a uma pergunta óbvia. Esta pequena bactéria tem que ser capaz de copiar o seu DNA, transcrever e traduzi-lo em proteínas, além de ser capaz de coordenar todas as etapas envolvidas na divisão celular. Tem que ser capaz de fazer todas as coisas que não pode obter de seu ambiente. Isso é um monte de informações a serem armazenadas e usadas adequadamente. Daí 473 genes.

Mas de onde veio a célula, em primeiro lugar? É o problema da galinha e o ovo. Dado o número de coisas que a célula tem que fazer para ser um organismo em funcionamento, por onde começar? DNA ou RNA por si só não é suficiente, porque a proteína é necessária para copiar o DNA e para realizar processos celulares básicos. Mas a proteína não é suficiente por si só. O DNA é necessário para herdar de forma estável a informação genética sobre como produzir proteínas.

Algumas pessoas propõem que o RNA poderia fazer o truque, porque bastando somente as circunstâncias certas, e com a ajuda de um experimentador, o RNA pode copiar a si mesmo, parcialmente. A ideia é que, se apenas a sequência correta do RNA viesse junto, poderia servir tanto como uma enzima de RNA (ou ribozima) como o modelo para se reproduzir.

Isso deixa de lado problemas maiores. Ribozimas só podem realizar algumas reações químicas simples, enquanto mesmo uma célula mínima precisa de muitos tipos de reações. Em segundo lugar, como o interruptor ao DNA e às proteínas ocorreram? Ninguém tem uma pista. Por fim, não esqueçamos o problema da interdependência, ou da complexidade irredutível, como o bioquímico Michael Behe chama em seu livro Darwin’s Black Box. A célula mínima, ele escreve, é um sistema “composto por várias partes bem-correspondentes, em muitos casos, que contribuem para a função básica, em que a remoção de qualquer uma das partes faz com que o sistema deixe de funcionar efetivamente”.

Os sistemas irredutíveis são evidências de um design inteligente, porque somente uma mente tem a capacidade de projetar e programar uma rede tão interdependente e rica em informações como uma célula mínima.

Pense sobre o projeto de um carro básico. Você precisa de um motor, uma transmissão, um eixo de transmissão, um volante, eixos e rodas, além de um chassi para mantê-los todos juntos. Depois, vem o gás e uma maneira de começar tudo. (Eu, sem dúvida, deixei algo de fora, mas você entendeu meu ponto). Ter uma ou duas dessas coisas não vai fazer um carro funcional. Todas as peças são necessárias antes que ele seja usado. E é preciso um designer para imaginar o que é necessário, como ajustá-lo em conjunto, e depois construí-lo.

Se você está falando sobre um carro ou uma célula mínima, não vai ocorrer sem um designer.

 

Dois mecanismos revisam a tradução do DNA. Faça disso três.

Por Evolution News 

[ Obs: Titulo e texto adaptados a partir do original – O artigo possui links no original em inglês – Imagem do EnV com seus devidos créditos ]

obama_healthcare_speech_draft

A própria ideia de que as células revisam suas informações genéticas torna o design inteligente intuitivamente óbvio. Não se revisa jargão (linguagem sem nexo). Se as células tivessem pavimentado conjuntos aleatórios de blocos, não importaria realmente a ordem que em eles estivessem reunidos. Sabemos, é claro, que a sequência é importante: a maioria das mutações causam doença ou morte. Revisão é prova por excelência que a informação genética representa a informação real, do tipo encontrada nos livros e nos softwares. Defensores do DI não acham surpreendente, portanto, que as células vão muito longe para proteger suas informações genéticas.

O “controle de qualidade” celular tem sido reconhecido na literatura há algum tempo. De fato, o Prêmio Nobel de Química em 2015 foi para três cientistas que descobriram mecanismos de reparo do DNA. As células inspecionam e corrigem suas macromoléculas informacionais em todas as fases: na transcrição, na tradução e durante a modificação pós-tradução.

Existem máquinas moleculares em movimento inspecionando outras máquinas em trabalho na célula. Elas reconhecem as proteínas dobradas e as marcam para degradação. E quando a célula se divide, as máquinas moleculares verificam cada letra quando as cadeias do DNA são duplicadas. As células estão em atividade de “controle de qualidade”.

Revisão, no entanto, é um passo além da reparação. Uma célula pode reparar uma cadeia quebrada de DNA, sem levar em conta a sequência de “letras” nucleotídicas. A revisão real deve garantir a precisão da própria sequência. A célula verifica erros de digitação? Absolutamente.

Um artigo na Proceedings of the National Academy of Sciences compartilhou novas evidências que suportam a questão do design. Pesquisadores da Universidade de Uppsala, na Suécia, encontraram não apenas uma, mas duas etapas de revisão independente no ribossomo além da que já era conhecida.

Elas ocorrem onde transcritos de RNA mensageiro são traduzidos em proteínas. O título diz que: “Duas etapas de revisão amplificam a precisão da tradução de códigos genéticos”. Aqui está a declaração sobre o significado da descoberta:

Descobrimos que dois passos de revisão amplificam a precisão da leitura do código genético, não um passo, como até agora se acreditava. Nós caracterizamos a base molecular de cada um destes passos, pavimentando o caminho para a análise estrutural em conjunto com a estrutura baseada em cálculos de energia livre padrão. Nosso trabalho destaca o papel essencial do fator de alongamento Tu para a tradução precisa do código genético, tanto na seleção inicial quanto na revisão. Nossos resultados têm implicações para a evolução da leitura eficiente e precisa do código genético através da revisão em vários passos, o que atenua os efeitos, doutra forma prejudiciais, ocorrido na compensação obrigatória entre eficiência e precisão na seleção do substrato feito por enzimas. [Enfase adicionada.]

Se você se lembra da animação dos passos de tradução em Unlocking the Mystery of Life (Desbloqueando o Mistério da Vida), lembre-se que os transcritos do RNA mensageiro (mRNA) são lidos em conjuntos de três letras (codons). Correspondendo aos codões de mRNA, estão as moléculas de RNA de transferência (tRNA), cada uma equipada com um “anticodon” correspondente numa extremidade e um aminoácido na outra extremidade (quando carregadas, são chamadas aminoacil-tRNAs ou aa-tRNAs). Como os codões e anticódons se emparelham em arquivo único dentro do ribossomo, os aminoácidos se fixam em arquivo único com ligações peptídicas.  A crescente cadeia polipeptídica irá se tornar uma proteína após a tradução ser completada.  Adicionalmente, as “chaperonas” moleculares asseguram que as cadeias polipeptídicas resultantes sejam dobradas corretamente em máquinas moleculares funcionais.

A equipe de Uppsala examinou o ribossomo para dar uma olhada no passo onde o tRNA encontra o mRNA. Eles sabiam que a seleção do tRNA correto era um primeiro passo crucial, inicialmente previsto por Linus Pauling sete décadas atrás. Quando a precisão medida na tradução mostrou-se realmente maior do que Pauling predisse, os biólogos moleculares suspeitaram que algum tipo de mecanismo de correção de erro deveria estar funcionando. Um mecanismo de revisão foi posteriormente encontrado no ribossomo. Mas como isso funciona? Podemos nos relacionar com revisores humanos, mas como as moléculas sem olhos são corrigidas no escuro dentro de um ribossomo?

A amplificação de precisão por revisão exige que o descarte de substrato seja conduzido por uma diminuição do potencial químico desde a entrada de um substrato até sua saída ao longo do caminho de revisão. Uma maneira de programar tal queda no potencial químico é acoplar o descarte de substratos por revisão a hidrólise de GTP ou ATP com alto potencial químico com o baixo potencial químico de seus produtos hidrolíticos.

Resumindo, a revisão precisa ser eficiente em termos de energia, mas não acontecerá sem o gasto de uma molécula rica em energia para empurrá-la. A reação deve favorecer a obtenção da molécula certa onde ela pertence.

Os bioquímicos sabiam que cada aa-tRNA teria de ser preparada para o seu papel através da ligação a um assistente chamada Fator  Elongation Tu (EF-Tu), mais uma molécula de combustível, GTP. Mas, depois desse passo, os autores encontraram outros dois:

Descobrimos que o ribossomo bacteriano utiliza dois passos de revisão seguindo a seleção inicial de RNAs de transferência (tRNAs) para manter uma elevada precisão da tradução do código genético. Isto significa que existem três passos de seleção para o reconhecimento de codões feito por aa-tRNAs. Em primeiro lugar, existe uma seleção inicial de codões por aa-tRNA no complexo ternário com o fator de alongamento Tu (EF-Tu) e GTP. Em segundo lugar, há revisão do aa-tRNA no complexo ternário com EF-Tu e PIB. Terceiro, há revisão de aa-tRNA na forma EF-Tu-independente, presumivelmente após a dissociação de EF-Tu · GDP do ribossomo (Figura 1).

Isto amplifica significativamente a precisão da tradução. “Embora já tenha sido reconhecido que a revisão em vários passos confere maior precisão e eficiência cinética em substrato-seletivo, via reações catalisadas por enzimas do que passo único de revisão”, dizem eles, “tem sido tomado como certo que existe apenas um único passo de revisão na seleção de tRNA no ribossomo tradutor”.

As novas descobertas lançam nova luz sobre os passos moleculares reais, necessários para a correção de alta precisão. E, embora seu trabalho tenha sido feito em bactérias, “sugerimos que os mecanismos de revisão em dois estágios funcionem não apenas em bactérias, mas também em eucariotos e, talvez, em todos os três reinos da vida”.

Como um evolucionista explica isso? No início do artigo, eles dizem: “Sugerimos que a revisão em vários passos na tradução de códigos genéticos tenha evoluído para neutralizar possíveis pontos potenciais de erro, na seleção inicial do(s) aa-tRNA(s) propenso(s) a erro(s) no complexo ternário com EF-Tu e GTP”.

Mas isso não pode ser verdade. É uma declaração teleológica. A seleção natural não pode “evoluir para” fazer nada. Logo depois no artigo, eles se concentram mais na questão, apresentando o enredo como um conto de fadas evolutivo: “Por que a Mãe Natureza evoluiu duas etapas de revisão na tradução de códigos genéticos?”.

A existência de dois passos distintos de revisão pode parecer surpreendente, porque a precisão da seleção inicial do codão pelo complexo ternário é normalmente notavelmente alta. Por conseguinte, sugerimos que a revisão em dois passos evoluiu para neutralizar os efeitos deletérios de um pequeno número de pontos de erro distintos para a seleção inicial do codão observada in vitro e in vivo.

Isso deve causar ainda mais tristeza para o neodarwinismo, porque mostra que a revisão de um único passo “normalmente é notavelmente alta”.  Em essência, a célula verifica a sua tradução, já precisa. Eles realmente usam a palavra “revendo” para descrever isso. Eles estimam que a revisão forneça um aumento de milhões de vezes em precisão, muito acima da modesta amplificação de revisão na gama dos trezentos, observada aqui.

Além da descoberta inesperada de duas etapas de revisão, o presente estudo identificou a base estrutural do primeiro passo EF-Tu-dependente e sugeriu características mecanicistas de ambas as etapas de revisão. Esses achados facilitarão a análise estrutural das etapas de revisão, junto com cálculos baseados na estrutura de suas energias livres padronizadas que codificam codões, para uma compreensão mais profunda da evolução da leitura precisa do código genético.

Outros Exemplos de Sistemas Redundantes na Célula.

Este não é o único caso de sistemas múltiplos e independentes na célula. Três pesquisadores em Massachusetts, também publicando na Proceedings of the National Academy of Sciences , descobriram mecanismos redundantes para reparar rupturas de cadeia dupla no DNA.  As duas vias, NHEJ e MMEJ, podem funcionar como sistemas primários e de backup. “É possível que haja redundância parcial entre as vias NHEJ e MMEJ, com MMEJ servindo como um backup e NHEJ sendo o principal mecanismo.” O caminho do backup contribui para a reparação de algumas rupturas duplas, mas não todas. Posts anteriores aqui no Evolution News apontaram redundância em sistemas biológicos, como este, afirmando que os “caminhos são organizados em uma rede entrelaçada, muitas vezes redundante, com arquitetura que está intimamente relacionada com a robustez do processamento de informação celular”. Outro artigo apontou que os cromossomos parecem ter um sítio de backup para centrômeros.

O que aprendemos nesses artigos combina bem com o que David Snoke disse em um podcast do ID the Future sobre a Biologia de Sistemas como a maneira do engenheiro de olhar a vida (para mais, veja isto de Casey Luskin). Engenheiros entendem conceitos como backups, redundância, dupla verificação e controle de qualidade. Eles percebem que há tradeoffs entre precisão e velocidade, assim, eles buscam aperfeiçoar os requisitos de projetos concorrentes.

Em vez da visão de baixo para cima do reducionista, o biólogo de sistemas toma a visão de cima para baixo: como todos os componentes funcionam juntos como um sistema? Na prática, diz ele, os biólogos de sistemas procuram entender os seres vivos como exemplos de sistemas otimizados, e também a “engenharia reversa” deles de maneiras inovadoras. Em ambos os contextos, o design inteligente – não a evolução darwiniana – é o conceito operacional que conduz a ciência.

O padrão Pentadáctilo e a descendência comum – As primeiras previsões da evolução.

By Cornelius Hunter – Darwins Predictions

[Texto adaptado a partir do original]

A pentadáctila – estrutura de cinco dígitos (quatro dedos e um polegar para os seres humanos) no final da estrutura do membro (locomotor) é um dos textos de prova mais célebres para a evolução.  A estrutura pentadáctila é encontrada em todos os tetrápodes e seus usos incluem o voo, o segurar/agarrar, o escalar e o rastejar. Tais atividades diversas, na lógica evolucionista, devem exigir diversos membros. Não parece haver nenhuma razão para que todos devam precisar de um membro de cinco dígitos apenas. Por que não três dígitos para alguns, oito para outros, treze para alguns outros, e assim por diante? E, no entanto todos eles são dotados de cinco dígitos. Como explicado por Darwin, “O que pode ser mais curioso que a mão de um homem, formada para agarrar, de uma toupeira para cavar, a perna do cavalo, a nadadeira da toninha (boto), e a asa do morcego? Tudo deve ser construído no mesmo padrão, e deve incluir ossos similares, nas mesmas posições relativas. (Darwin, 382)

Tal design abaixo do ideal deve ser um artefato de uma descida de design (comum) abaixo do ideal, que foi proferido a partir de um ancestral comum, ao invés de ter sido especificamente concebido para cada espécie. E o padrão de descendência comum formado por essa estrutura é muitas vezes apontado como uma forte evidência para a evolução. (Berra, 21; Campbell et al, 509; Futuyma, 47; Johnson e Losos, 298; Johnson e Raven, 286; Mayr, 26). Há um texto que chama de “exemplo clássico” de evidência evolutiva. (Ridley, 45)

biochemistry

Mas agora se sabe que esta previsão é falsa. A estrutura de dígitos nos tetrápodes não se conforma com o padrão de descendência comum. Na verdade, apêndices (estrutura locomotora) têm várias estruturas de dígitos e elas são distribuídas através das espécies de várias maneiras. Isto é encontrado tanto em espécies existentes quanto no registro fóssil. Como explicado pelo evolucionista Stephen Jay Gould, “A conclusão parece inevitável, e uma velha ”certeza” deve ser duramente revertida. (Gould)

Isto significa que os evolucionistas não podem modelar as estruturas e o padrão de distribuição observados, como uma mera consequência de descendência comum. Em vez disso, uma história evolutiva complicada é necessária (Brown) onde a estrutura pentadáctila “re-evolui” em diferentes linhagens, e apêndices evoluem, são perdidas, e depois evoluem novamente. E como concluído em um estudo recente: “Nossos resultados filogenéticos apoiam exemplos independentes de perda de membro completo, bem como vários exemplos de perda e reaquisição de dígitos, tal como a perda e reaquisição da  abertura do ouvido externo (“orelha”). Ainda mais impressionante, encontramos um forte apoio estatístico para a reaquisição de uma forma do corpo (estrutura) pentadáctilo de um ancestral com dígitos a menos… Os resultados do nosso estudo se juntam a um corpo emergente de literatura, mostrando um forte suporte estatístico para a perda de caracteres, seguido por reaquisição evolutiva de estruturas complexas associadas a uma forma generalizada do corpo pentadáctilo.(Siler e Brown)

Referencias:

 

 

Berra, Tim. 1990. Evolution and the Myth of Creationism. Stanford: Stanford University Press.

 

Brown, R., et. al. 2012. “Species delimitation and digit number in a North African skink.” Ecology and Evolution 2:2962-73.

 

Campbell, Neil, et. al. 2011. Biology. 5th ed. San Francisco: Pearson.

 

Darwin, Charles. 1872. The Origin of Species. 6th ed. London: John Murray.

http://darwin-online.org.uk/content/frameset?itemID=F391&viewtype=text&pageseq=1

 

Futuyma, Douglas. 1982. Science on Trial: The Case for Evolution. New York: Pantheon Books.

 

Gould, Steven Jay. 1991. “Eight (or Fewer) Little Piggies.” Natural History 100:22-29.

 

Johnson, G., J. Losos. 2008. The Living World. 5th ed. New York: McGraw-Hill.

 

Johnson, G., P. Raven. 2004. Biology. New York: Holt, Rinehart and Winston.

 

Mayr, Ernst. 2001. What Evolution Is. New York: Basic Books.

 

Ridley, Mark. 1993. Evolution. Boston: Blackwell Scientific.

Siler C., R. Brown. 2011. “Evidence for repeated acquisition and loss of complex body-form characters in an insular clade of Southeast Asian semi-fossorial skinks.” Evolution 65:2641-2663.

 

 

Filósofo ateu acha que “nunca temos acesso direto aos nossos pensamentos”

By Evolution News 

[Obs: Texto adaptado – Links em inglês – A imagem é do EnV]

 

Huike_thinking

 

Em um post intitulado “Por fim: um pensador racional em “The Stone”, o biólogo ateu e negador do livre-arbítrio,  Jerry Coyne, cita o companheiro ateu Alex Rosenberg, professor de filosofia na Universidade Duke .

Rosenberg:

Nós nunca temos acesso direto aos nossos pensamentos. Como Peter Carruthers já havia argumentado primeiramente, a auto-consciência é apenas a leitura da mente voltada para dentro … Não há nenhum ponto de vista em primeira pessoa.

Nosso acesso aos nossos próprios pensamentos é tão indireto e falível como o nosso acesso aos pensamentos de outras pessoas. Nós não temos acesso privilegiado às nossas próprias mentes. Se nossos pensamentos dão o verdadeiro significado para nossas ações, nossas palavras, nossas vidas, então não podemos; nunca, estarmos certos sobre o que dizer ou fazer, ou para essa matéria, o que pensamos ou porque pensamos isso.

Nem sequer está claro o que “Nós nunca temos acesso direto aos nossos pensamentos” significa. Claro que temos acesso direto aos nossos pensamentos. Pode-se definir a experiência em primeira pessoa (ou seja, pensamento) como “aquilo que temos acesso direto.

Uma característica marcante da mente é que ela é incorrigível. Nossos pensamentos são nossos, estamos sempre certo sobre a existência dos nossos próprios pensamentos, e um observador nunca pode estar certo sobre o pensamento de outra pessoa, se o observador e a pessoa discordar. Se eu estou pensando de uma maçã vermelha, então eu estou pensando em uma maçã vermelha. Se o meu amigo diz: “Não está não. Você está pensando de um Corvette azul“, então eu estou certo e meu amigo está errado. Você não pode estar errado sobre o conteúdo bruto do que você está pensando.

Agora isso não significa que você não pode ter um pensamento equivocado (uma proposição falsa) ou que você não pode ter um mal-entendido (talvez a maçã que estou pensando é mais marrom do que o vermelha). Mas meu pensamento é o meu pensamento. Eu tenho acesso direto a ele – eu o experimento – e as outras pessoas não.

Então é claro que há um ponto de vista na primeira pessoa. Nosso ponto de vista único, é na primeira pessoa. Isso é o que “ponto de vista” significa. É a vista do “ponto” de um ser humano, que é a primeira pessoa por definição.

Agora, é claro, compreender as motivações para nossos pensamentos, e a correspondência entre nossas crenças e realidade, estão abertos ao debate.Podemos não saber exatamente por que pensamos algo e sobre algo. Mas nós sabemos – incorrigivelmente – que achamos alguma coisa e sobre alguma coisa.

Como tantas outras reivindicações materialistas bizarras sobre a mente, a afirmação de Rosenberg é auto-refutável. Se não temos acesso direto aos nossos pensamentos, por que iriamos assumir que o que Rosenberg tem escrito, tem qualquer relação com o que ele realmente pensa? Se Rosenberg não tem acesso direto aos seus próprios pensamentos, não há nenhuma maneira de saber o que ele realmente pensa. Mesmo que ele não saiba o que ele realmente pensa.

As teorias materialistas sobre a mente beiram a loucura.
Se um homem entra em um consultório médico e diz: “Eu não tenho, em tempo algum, acesso direto aos meus pensamentos e não tenho um ponto de vista na primeira pessoa“, este homem vai ser encaminhado para um psiquiatra e pode ser involuntariamente internado até que se prove que ele não é um perigo para si mesmo ou para os outros.

Se o mesmo cara entra no departamento de filosofia na Universidade de Duke, ele recebe um mandato.

 

O relógio molecular mantém o tempo evolutivo. – Primeiras previsões da evolução.

Por Cornelius Hunter – Darwins Predictions

Texto adaptado.

Na década de 1960 os biólogos moleculares aprenderam a analisar moléculas de proteínas e a determinar a sequência de aminoácidos que compreendem uma proteína. Foi então descoberto que uma determinada molécula de proteína varia um pouco de espécie para espécie. Por exemplo, a hemoglobina, uma proteína do sangue, tem função semelhante, a dimensão global e a estrutura em espécies diferentes. Mas a sua sequência de aminoácidos varia de espécie para espécie. Emile Zuckerkandl e Linus Pauling argumentaram que, se tais diferenças de sequência foram o resultado de mudanças evolutivas que ocorrem ao longo da história da vida, então elas poderiam ser usadas ​​para estimar eventos passados de especiação – uma noção que se tornou conhecida como o relógio molecular(Zuckerkandl and Pauling)

chapter-18-lecture-classification-33-728

Relógio Molecular

Em décadas posteriores este conceito de relógio molecular, baseando-se no pressuposto de uma taxa mais ou menos constante de evolução molecular, tornou-se fundamental na biologia evolutiva. (Thomas, et. al.) Como a Academia Nacional de Ciências explicou, o relógio molecular “determina relações evolutivas entre organismos, e indica o tempo no passado, quando as espécies começaram a divergir uma da outra.(Science and Creationism, 3) Na verdade, o relógio molecular foi exaltado como forte evidência de evolução e, na verdade, um sentimento comum foi de que a evolução era obrigada a explicar essas evidências. Como um evolucionista molecular líder escreveu, o relógio molecular é “compreensível apenas num quadro evolutivo.(Jukes, 119, ênfase no original)

A alegação de que o relógio molecular só pode ser explicado pela evolução é, no entanto, agora, um ponto discutível; como mostra o crescente número de evidência, que diferenças moleculares, muitas vezes não se encaixam no padrão esperado. O relógio molecular que os evolucionistas tinham imaginado não existe. A literatura está cheia de exemplos onde o conceito de relógio molecular falha. Por exemplo, verificou-se inicialmente que os diferentes tipos de proteínas devem evoluir a taxas muito diferentes, se houver um relógio molecular. Por exemplo, os (proteínas) fibrinopeptídios em várias espécies devem ter evoluído mais do que quinhentas vezes mais rápido do que a proteína histona IV. Além disso, verificou-se que a taxa de evolução de certas proteínas devem variar significativamente ao longo do tempo, entre diferentes espécies e entre diferentes linhagens. (Thomas, et. al.; Andrews, 28)

A proteína relaxina, a enzima superóxido dismutase (SOD) e a glicerol-3-fosfato desidrogenase (GPDH), por exemplo, todas contradizem a predição do relógio molecular. Por um lado, a SOD mostra inesperadamente muito maior variação entre os tipos semelhantes de moscas da fruta do que entre organismos muito diferentes, tais como animais e plantas. Por outro lado GPDH mostra a tendência oposta para a mesma espécie. Como um cientista concluiu, GPDH e SOD em conjunto, nos deixam “sem poder preditivo e sem relógio adequado.(Ayala)

Os evolucionistas estão encontrando cada vez mais, provas de que as taxas supostas de evolução molecular devem variar consideravelmente entre as espécies em uma ampla gama de táxons, incluindo mamíferos, artrópodes, plantas vasculares, e até mesmo entre linhagens estreitamente relacionadas. Como um estudo concluiu: “O falso pressuposto de um relógio molecular ao reconstruir filogenias moleculares pode resultar em topologia incorreta e estimativa de data tendenciosa. … Este estudo mostra que há uma variação significativa na taxa de todos os filos e na maioria dos genes examinados … (Thomas, et. al.)

gr1

 

Os evolucionistas continuam a utilizar o conceito de relógio molecular, mas os muitos fatores de correção destacam o fato de que as sequências de dados estão sendo adaptadas a teoria, ao invés do contrário. Como um evolucionista advertiu: “Parece desconcertante que existem muitas exceções à progressão ordenada de espécies como é determinada por homologias moleculares; tanto é verdade que eu acho que a exceção, as peculiaridades, podem carregar a mensagem mais importante.(Schwabe)

Referências:

Andrews, Peter. 1987. “Aspects of hominoid phylogeny” in Molecules and Morphology in Evolution, ed. Colin Patterson. Cambridge: Cambridge University Press.

Ayala, F. 1999. “Molecular clock mirages.” BioEssays 21:71-75.

Jukes, Thomas. 1983. “Molecular evidence for evolution” in: Scientists Confront Creationism, ed. Laurie Godfrey. New York: W. W. Norton.

Schwabe, C. 1986. “On the validity of molecular evolution.” Trends in Biochemical Sciences 11:280-282.

Science and Creationism: A View from the National Academy of Sciences. 2d ed. 1999. Washington, D.C.: National Academy Press.

Thomas, J. A., J. J. Welch, M. Woolfit, L. Bromham. 2006. “There is no universal molecular clock for invertebrates, but rate variation does not scale with body size.” Proceedings of the National Academy of Sciences 103:7366-7371.

Zuckerkandl, E., L. Pauling. 1965. “Molecules as documents of evolutionary history.” J Theoretical Biology 8:357-366.

Design Inteligente, um argumento da ignorância?

Por Angelo Grasso – Grupo Design Inteligente [Facebook]

Em um contexto explicativo, os argumentos da ignorância têm a forma:

Premissa Um: Porque X não pode produzir provas ou explicar E. Conclusão: Portanto, causa Y produziu ou explica E.

 

2- better flagella

 

 

Os críticos do projeto inteligente alegam que o argumento para o design inteligente assume esta forma também. Michael Shermer, gosta de alegar que, “design inteligente argumenta que a vida é demasiada complexa especificamente (estruturas complexas como o DNA) para ter evoluída por forças naturais. Portanto, a vida deve ter sido criada por um designer inteligente.

Em suma, os críticos afirmam que os proponentes do DI argumentam como se segue:

Premissa Um: causas materiais não podem produzir ou explicar as informações especificadas.
Conclusão: Portanto, uma causa inteligente produziu informação especificada biológica.

Se os defensores do design inteligente estivessem discutindo na forma anterior, eles seriam culpados de argumentar por ignorância. Mas o argumento tem a seguinte forma:

Premissa Um: Apesar de uma busca minuciosa, não há causas materiais descobertas que demonstram o poder de produzir grandes quantidades de informação especificada, sistemas biológicos irredutíveis e interdependentes.
Premissa Dois: Causas inteligentes demonstraram o poder de produzir grandes quantidades de informação especificada, sistemas irredutíveis e interdependentes de todos os tipos.
Conclusão: O design inteligente constitui a melhor, mais adequada explicação em relação a causas e origens, e explicação para a origem da informação e complexidade irredutível na célula, e interdependência de proteínas, organelas, e partes do corpo, e até mesmo de animais e plantas, tipo interdependência de mariposas e flores, por exemplo.

Ou, dito de maneira mais formal, o caso para o projeto inteligente feito aqui tem a forma:

Premissa Um: A causa X não produz E.

Premissa Dois: Causa Y pode e deve produzir E.

Conclusão: Y explica E melhor do que X.

1. ) Alto conteúdo de informação (ou complexidade especificada) e complexidade irredutível constituem indicadores fortes ou imagem de design inteligente no passado.

2. ) Sistemas biológicos têm um alto teor de informação (ou complexidade especificada) e utilizam subsistemas que manifestam complexidade irredutível. 

3. ) Mecanismos naturais ou causas sem direção não são suficientes para explicar a origem da informação (complexidade especificada) ou complexidade irredutível.

4. ) Por isso, o design inteligente constitui a melhor explicação para a origem da informação e complexidade irredutível em sistemas biológicos.

 

autoritario

Portanto quem está a usar de ignorância, ou equívoco, ou desonestidade intelectual mesmo, são aqueles que usam essa esse tipo de argumentação tola. [Jeph Simple]

 

Histonas não podem tolerar muitas mudanças – As primeiras previsões da evolução.

Por Darwins Predictions – Cornelius Hunter

histona-1

 

As histonas são proteínas que servem como cubos sobre os quais o ADN é envolvido. Elas são muito semelhantes entre espécies muito diferentes, o que significa que elas devem ter evoluído logo no início da história evolutiva. Como explica certo livro, As sequências de aminoácidos de quatro histonas são muito semelhantes entre espécies de parentesco distante.… A similaridade na seqüência entre histonas de todos os eucariotos indica que elas dobram-se em conformações tridimensionais muito semelhantes; a função das histonas foi otimizada cedo, na evolução de um ancestral comum de todos os eucariotos modernos. (Lodish et. al., Section 9.5) E essa grande similaridade entre as histonas também significa que elas não devem tolerar muito bem alterações, como um outro livro explica: “As alterações na sequência de aminoácidos são, evidentemente, muito mais prejudiciais para algumas proteínas do que para outras. … Praticamente todas as mudanças de aminoácidos são prejudiciais em histonas H4. Nós assumimos que os indivíduos que realizaram essas mutações nocivas foram eliminados da população através da seleção natural. “(Alberts et. al. 1994, 243)


Assim, a previsão da evolução é que nestas (proteínas) histonas, praticamente todas as alterações são prejudiciais: “Como pode ser esperado a partir do seu papel fundamental na embalagem do ADN, as histonas estão entre as proteínas eucarióticas mais altamente conservadas . Por exemplo, a sequência de aminoácidos da histona H4 de uma ervilha e uma vaca diferem em apenas 2 (duas) das 102 posições. Esta forte conservação evolutiva sugere que as funções da histonas envolvem quase todos os seus aminoácidos, de modo que uma alteração em qualquer posição é prejudicial para a célula. “(Alberts et. al. 2002, Chapter 4)

Essa previsão também foi dada em apresentações populares da teoria: “Praticamente todas as mutações prejudicam a função da histona, de modo que quase nenhuma passa pelo filtro da seleção natural. Os 103 aminoácidos desta proteína são idênticos para quase todas as plantas e animais” (Molecular Clocks: Proteins That Evolve at Different Rates).

Mas esta previsão acabou sendo falsificada. Um estudo anterior sugeriu que uma das histonas poderia tolerar bem muitas mudanças. (Agarwal and Behe) E, posteriormente, estudos confirmaram e ampliaram esse achado: “Apesar da natureza extremamente bem conservada de resíduos de histonas ao longo de diferentes organismos, apenas algumas mutações nos resíduos individuais (incluindo os locais não modificáveis) provocam defeitos fenotípicos proeminentes” (Kim et. al.)
375px-Nucleosome_1KX5_colour_codedDa mesma forma um outro papel tem documentado estes resultados contraditórios: “É notável como muitos resíduos nestas proteínas altamente conservadas podem ser mutados e reterem a função básica do nucleossomo. … O elevado nível de conservação da sequência das histonas entre filos, sugere uma vantagem de aptidão destas sequências de aminoácidos particulares ao longo da evolução. Uma análise abrangente ainda indica que muitas mutações nas histonas não têm um fenótipo reconhecido. “(Dai et. al.) Na verdade, ainda mais surpreendente, muitas mutações, realmente elevaram o nível de condicionamento físico. (Dai et. al.)
(imagem do wikipédia – nucleossoma)

Referências
Agarwal, S., M. Behe. 1996. “Non-conservative mutations are well tolerated in the globular region of yeast histone H4.” J Molecular Biology 255:401-411.

Alberts, Bruce., D. Bray, J. Lewis, M. Raff, K. Roberts, J. Watson. 1994. Molecular Biology of the Cell. 3d ed. New York: Garland Publishing.

Alberts, Bruce., A. Johnson, J. Lewis, et. al. 2002. Molecular Biology of the Cell. 4th ed. New York: Garland Publishing. http://www.ncbi.nlm.nih.gov/books/NBK26834/

Dai, J., E. Hyland, D. Yuan, H. Huang, J. Bader, J. Boeke. 2008. “Probing nucleosome function: a highly versatile library of synthetic histone H3 and H4 mutants.” Cell 134:1066-1078.

Kim, J., J. Hsu, M. Smith, C. Allis. 2012. “Mutagenesis of pairwise combinations of histone amino-terminal tails reveals functional redundancy in budding yeast.” Proceedings of the National Academy of Sciences 109:5779-5784.

Lodish H., A. Berk, S. Zipursky, et. al. 2000. Molecular Cell Biology. 4th ed. New York: W. H. Freeman. http://www.ncbi.nlm.nih.gov/books/NBK21500/

“Molecular Clocks: Proteins That Evolve at Different Rates.” 2001. WGBH Educational Foundation and Clear Blue Sky Productions.

O CUSTO DA COMPLEXIDADE VII- A Biologia Evolutiva é uma Ciência Histórica.

10418268_616690471804930_3231150156329211448_n
Imagem do livro “What Evolution is”, Ernst Mayr p. 304

 

 

Pouco se comenta sobre os métodos empregados para a construção da Teoria da Evolução. Neste pequeno artigo escolhemos Ernst Mayr, o considerado Darwin do século XX, para construirmos nosso entendimento da metodologia científica empregada na Evolução – a narrativa histórica. A Evolução tem leis? Como compreender a homologia, base de todas as evidências de Teoria da Evolução?
 

 

I-NARRATIVA HISTÓRICA

O pensamento fundamental desse artigo esta exarado no seguinte texto:
Por exemplo, Darwin introduziu a historicidade na ciência. A biologia evolutiva, ao contrário da física e da química, é uma ciência histórica – o evolucionismo tenta explicar eventos e processos que já ocorreram. Leis e experimentos não são técnicas apropriadas para a explicação de tais eventos e processos. Em vez disso é preciso construir uma narrativa histórica, que consista em uma reconstrução experimental de um cenário em particular que tenha levado aos eventos que se está tentando explicar(1)

Em outras palavras, a Biologia Evolutiva teve de desenvolver uma metologia própria, as narrativas históricas (cenários hipotéticos- em inglês “tentatives”-preliminares) (2) Pertence às Ciências Históricas, pois trabalha com eventos únicos como extinção dos dinossauros ou o surgimento dos homens. Assim o cientista inicia com uma conjectura e texta exaustivamente sua validade (3)Um cenário explicativo proposto de eventos passados para ser testado quanto à sua validade”. (4)

Vamos estudar um comentário sobre “reconstrução histórica”. “A reconstrução histórica de um processo é uma maneira perfeitamente válida de estudar esse processo e pode dar ensejo a previsões testáveis. Podemos prever que o Sol começará a se apagar em cerca de 5 bilhões de anos, do mesmo modo que podemos prever que populações de laboratório selecionadas artificialmente em diferentes direções vão tornar-se geneticamente isoladas.(5) Qual é o problema dessa afirmação? Todo o processo evolutivo ocorre por SELEÇÃO NATURAL (predação, doença, limitação climática e alimentar, competição), o que é bem diferente da SELEÇÃO ARTIFICIAL ( é só exemplificar um cachorro que vacinamos, alimentamos, abrigamos). O estudo da seleção natural seria uma narrativa histórica, mas seleção artificial não, pois é um evento que pode ser repetido a priori. Já, referente aos fatos naturais, nada será rigorosamente igual- não se entra no mesmo rio duas vezes é um pensamento grego que representa bem os eventos naturais. A impressão que sempre passa é a total falta de compreensão sobre o assunto, tanto por evolucionistas como criacionistas.

Como esses grupos são recalcitrantes em suas ideias, cito um artigo, do Reznick, em inglês:

In the laboratory, guppies from high predation environments had delayed senescence relative to those from low predation environments. In the field the apparent relationship is the opposite. One hypothesis for this difference is that a tradeoff associated with the evolution of the high predation LIFE HISTORY is a decrease in the investment in the immune system. Such a sacrifice would be evident in nature where there is exposure to disease and parasites but less so in the laboratory, which is relatively disease and parasite free.”(6)**grifo nosso** [TRADUÇÃO NA REFERÊNCIA]

Em resumo, a história narrativa evolucionista sempre indicará uma a direção: EVOLUÇÃO. Além do mais, qual é a VALIDAÇÃO desse método no método científico? A gentileza de alguém conseguir um artigo sobre o assunto…

E a situação evolucionista só piora…
 

 

II- HOMOLOGIA É INFERÊNCIA

A afirmativa de que certas características encontradas em táxons relativamente distantes são homólogas constitui, a princípio, uma mera conjectura. A validade desse tipo de inferência deve ser testada com uma série de critérios (Mayr e Ashlock, 1991), como a posição à órgãos adjacentes, presença de estágios intermediários em outros táxons, semelhanças na ontogenia, existência de estágios intermediários em ancestrais fósseis, e concordância com as evidências proporcionadas por outras homologias. A homologia não pode ser comprovada, é sempre inferida(7)

E o que é inferência?
Inferência é o processo de raciocínio usado em pesquisa científica em que parte-se de uma ou mais proposições e se procede a uma outra proposição, ou a outras proposições, cuja veracidade acredita-se seja implicada pela veracidade do primeiro conjunto de proposições(8).
Obviamente o primeiro conjunto de proposições é que a Teoria da Evolução esteja correta, corroborada, é óbvio, pela HOMOLOGIA, que baseia-se na premissa de que a Teoria da Evolução é correta, tendo como prova a HOMOLOGIA, que baseia-se na premissa…
 

 

III- A TEORIA DA EVOLUÇÃO NÃO TEM LEIS NATURAIS

4. a ausência de leis naturais universais em biologia. OS filósofos do positivismo lógico, e de fato todos os filósofos com um formação em física e matemática, baseiam suas teorias leis naturais e essas teorias são, portanto, geralmente estritamente deterministas. Dentro da biologia também há regularidades, mas vários autores (Smart 1963, Beatty 1995) questionam severamente se estas são as mesmas que as leis naturais das ciências físicas. Não há consenso ainda na resposta, a esta controvérsia. Leis certamente desempenham um pequeno papel na construção teórica em biologia. A principal razão para a menor importância das leis na formação da teoria biológica é, talvez, o maior papel desempenhado em sistemas biológicos pelo acaso e aleatoriedade. Outras razões para o pequeno papel das leis são a singularidade de uma percentagem elevada de fenômenos em sistemas vivos, bem como a natureza histórica de eventos.

Devido à natureza probabilística da maior parte das generalizações em biologia evolutiva, é impossível aplicar o método de falsificação de Popper para o teste de teoria, porque um caso particular de uma refutação de uma aparente determinada lei não pode ser qualquer coisa, mas uma exceção, como são comuns em biologia. A maioria das teorias na biologia não são baseadas em leis, mas em conceitos.
Exemplos de tais conceitos são, por exemplo, seleção, especiação, a filogenia, competição, população, imprinting, adaptabilidade, a biodiversidade, desenvolvimento, ecossistema, e função.
A inaplicabilidade à biologia desses quatro princípios que são tão básicos nas ciências físicas tem contribuído muito para a percepção de que biologia não é mesmo como a física”.
Os outros três itens seriam a tipologia, o determinismo e o reducionismo.(9)
As leis cedem lugar para conceitos no Darwinismo”. (10)
 

 

IV- O QUE PODE SER REFUTADO

…”o darwinismo rejeita todos os fenômenos e causas sobrenaturais. A teoria da evolução pela seleção natural explica a capacidade de adaptação e diversidade do mundo sem ter de recorrer a nada além da matéria.(11)
É só demonstrar que a Seleção Natural nada mais é do que uma peneira que destrói a complexidade biológica, e a Teoria da Evolução está REFUTADA.

 

 

Marcos Ariel

Médico Pediatra

 

 

 

Referências

1- Mayr, Ernst. O Impacto de Darwin no Pensamento Moderno. Scientific American BR Especial História da Evolução, p. 58

2- Mayr, Ernst. Biologia Ciência Única. Reflexões sobre a automomia de uma disciplina científica. Cia das Letras, 2006. p. 40.

3- Idem, p. 48.

4- Mayr, Ernst What Makes Biology Unique? Cambridge University Press, 2004, p. 221

5- Coyne, Jerry A. Por que a evolução é uma verdade / Jerry A. Coyne ; [tradução Luiz Reyes Gil]. – 1. ed. – São Paulo : JSN Editora, 2014. p. 466

6-Reznick, David N and Ghalambor, Cameron K. Selection in Nature: Experimental Manipulations of Natural Populations.INTEGR. COMP. BIOL., 45:456–462 (2005). “No laboratório, guppies de ambientes de alta predação tem sua senescência atrasada em comparação com aquelas de ambientes de baixa predação . No campo a relação aparente é a oposta . Uma hipótese para esta diferença é que uma troca associada com a evolução da HISTÓRIA DE VIDA de alta predação é uma diminuição do investimento no sistema imunitário . Tal sacrifício seria evidente na natureza onde há exposição à doença e parasitas , mas menos no laboratório , o qual é relativamente livre de doenças e parasitas.”

7- Mayr, Ernst O que é Evolução, Ed. Rocco, 2001, p.48-49.

8- http://www.galileu.esalq.usp.br/mostra_topico.php?cod=119

9- Mayr, Ernst, 2004, p. 28

10- Mayr, Ernst. O Impacto de Darwin no Pensamento Moderno. Scientific American BR Especial História da Evolução, p. 59

11- Idem, p. 60.

A linguagem codificada escrita em microtúbulos, o esqueleto da célula, e como isso ressalta surpreendentemente a origem inteligente da vida. – PARTE I

Por Angelo Grasso

 

 

424340189_847318749893607_207055552_95759429837271104

 

 

 

 

 

 

 

 

O Designer da vida deixou uma riqueza de evidências de sua existência na criação. Vastas impressões que evidenciam o design inteligente em cada célula viva. É amplamente conhecido que o DNA é um dispositivo de armazenamento de informação complexa e especificada, que codifica a informação para produzir proteínas e dirigindo muitos processos altamente complexos na célula. O que é menos conhecido, é que existem vários outros sistemas de códigos, bem como, nomeadamente, o código de ligação de histonas, código de ligação do fator de transcrição, o código de splicing,o código de estrutura secundária de RNA, e o código ultracomplexo e ainda não decifrado glycans. E há um outro sistema de código surpreendente, o chamado código Tubulin, que está sendo desvendado aos poucos em recentes pesquisas científicas. Sabe-se até agora que, entre outras coisas, ele dirige e dá sinais para proteínas motoras cinesina e miosina precisamente onde e quando para desengatar a partir de auto-estradas nanomolares aonde entregar sua carga.

 

Pesquisas recentes estão descobrindo que este código de uma maneira mesmo incrível até armazena nossas memórias no cérebro e as torna disponíveis a longo prazo.

 

Para que as células funcionem adequadamente, elas devem organizar-se e interagir mecanicamente umas com as outras e com o seu ambiente. Elas têm que ser corretamente em forma, fisicamente robustas, e devidamente estruturadas internamente. Muitas têm que mudar a sua forma e se deslocar de um lugar para outro. Todas as células têm que ser capaz de reorganizar seus componentes internos à medida que crescem, se dividem, e adaptar-se às novas circunstâncias. Estas funções espaciais e mecânicas dependem de um sistema de filamentos notável chamado o citoesqueleto. Variadas funções do citoesqueleto dependem do comportamento de três famílias de filamentos: filamentos actina-proteína, microtúbulos e filamentos intermédios. Os microtúbulos são muito importantes para um número de processos celulares.

 

Eles estão envolvidos na manutenção da estrutura da célula e fornecem uma plataforma para montagens macromoleculares intracelulares através dos motores moleculares dineínas e cinesinas que marcham como gente. Eles também estão envolvidos na separação cromossoma (mitose e meiose), e são os principais constituintes de fusos mitóticos, os quais são utilizados para puxar para além dos cromossomas eucarióticos. A divisão celular mitótica é a tarefa mais fundamental de todas as células eucariótas vivas. As células têm máquinas intrincadas e bem regulamentadas para garantir que a mitose ocorra com uma frequência adequada e com alta fidelidade. Se alguém quiser explicar a origem das células eucarióticas, o surgir da mitose, seu mecanismo, organelas celulares envolvidas e proteínas devem ser explicadas. O centrossoma desempenha um papel central: ele funciona como o principal centro-organização dos microtúbulos e desempenha um papel vital em guiar a segregação dos cromossomos durante a mitose. No centrossoma, dois centrioles residem em ângulos retos entre si, ligados, por fibras, numa extremidade.

 

slide_47

 

Estas estruturas são perfeitas arquiteturas essenciais em muitas células de animais e plantas (embora não em plantas com flores ou fungos, ou em procariotas). Elas ajudam a organizar os centrossomas, cujos eixos de microtúbulos durante a divisão celular chegam aos cromossomos alinhados e trazê-los para as células filhas.

 

Heterodímeros α- e β-tubulina são as subunidades estruturais da estrutura microtúbulo. A estrutura é dividida no domínio do terminal amino contendo a região de ligação de nucleótidos, um domínio intermediário contendo o local de ligação do taxol, e o domínio carboxi-terminal, que provavelmente constitui a superfície de ligação para proteínas do motor. A menos que todos os três domínios funcionais estivessem totalmente funcionais e desenvolvidos desde o início, as tubulinas não teriam nenhuma função útil. Não haveria razão para o local de ligação Taxol estar sem proteínas de motor existentes. Instabilidade dinâmica, a mudança estocástica entre crescimento e contração, é essencial para a função de microtúbulos.

 

A dinâmica dos microtúbulos no interior das células é regulada por uma variedade de proteínas que ligam dímeros de tubulina ou os microtúbulos. Proteínas que se ligam aos microtúbulos são chamados coletivamente de proteínas associadas a microtúbulos, ou a família maps.The MAP inclui grandes proteínas como a MAP-1A, MAP-1B, 1C-MAP, MAP-2 e MAP-4 e componentes menores, como tau e MAP 2C.

 

fullsize-cromossomas-580

 

 

 

 

 

 

Isto é altamente relevante. Os microtúbulos dependem de proteínas associadas a microtúbulos para a função apropriada. Interdependência é uma característica da concepção inteligente, e uma forte evidência de que ambos, microtúbulos, e proteinas MAP’s tiveram que emergir juntos, ao mesmo tempo, uma vez que um depende do outro para a função apropriada. Mas mais do que isso. Os microtúbulos são essenciais para formar o citoesqueleto, o qual é essencial para a forma e estrutura da célula. Em poucas palavras, Sem proteínas MAP’s, não haveria nenhuma função adequada dos microtúbulos. Sem microtúbulos, nenhuma função adequada do citoesqueleto poderia existir. Sem citoesqueleto, nenhuma célula com funcionamento adequado existiria. A evidência é muito forte, que todos esses elementos tiveram que surgir juntos, de uma vez. Cinesina e Dynein pertencem a familia de proteínas MAP’s. Proteínas cinesina contribuem para a atividade de despolimerização de microtúbulos ao centrómero centrossoma e durante a mitose. Estas atividades têm sido mostradas como sendo essencial para a morfogénese do fuso e a segregação de cromossomas. A emergência evolutiva gradual de células eucarióticas não é factível por mais uma razão, descrita aqui.

 

Obs: A fonte do deste artigo possui os artigos originais e suas referências.

 

Continua… …. ….

 

 

 

 

O incrível spliceosome , a máquina macromolecular mais complexa conhecida, e processamento de pré-mRNA em células eucarióticas

Por Angelo Grasso

 

 

Ao longo do caminho para fazer proteínas em células eucarióticas, há toda uma cadeia de eventos subsequentes que devem estar simultaneamente plenamente operacionais, bem como as máquinas prontas no local, a fim de obter o produto funcional, isto é proteínas. No início do processo, o DNA é transcrito na máquina molecular de RNA-polimerase, para se obter o RNA mensageiro (mRNA), que depois tem de passar por modificações pós-transcricionais. Isso é tampando o mRNA, fase chamada de alongamento, o splicing, corte, poliadenilação e terminação, antes que possa ser exportado a partir do núcleo para o CITOSSOL, e síntese protéica iniciada, (TRADUÇÃO), e a conclusão da síntese de proteína e dobra das proteínas.
mRNAs bacterianas são sintetizadas pela polimerase de RNA, a transcrição partindo e parando em pontos específicos no genoma. A situação em eucariotas é substancialmente diferente. Em particular, a transcrição é apenas o primeiro de vários passos necessários para a produção de uma molécula de mRNA madura. O RNA maduro para muitos genes é codificado de uma maneira descontínua numa série de exões discretos, que são separados um do outro ao longo da cadeia de RNA por intrões não-codificantes. mRNA, rRNA, e tRNA podem conter intrões que devem ser removidos a partir de RNAs do precursor para produzir moleculas funcionais . A tarefa formidável de identificação e junção para unir exões entre todos os RNA’s intrônicos é realizada por uma máquina grande de ribonucleoproteína, chamada spliceossoma, qual é composta de várias pequenas ribonucleoproteínas nucleares individuais, cinco snRNPs, pronuncia-se ” snurps “, (U1, U2, U4, U5 e U6), cada uma contendo uma molécula de RNA chamada de snRNA que tem geralmente 100-300 nucleótidos de comprimento, além de fatores adicionais de proteínas que reconhecem sequências específicas do mRNA ou promovem rearranjos conformacionais na spliceosoma necessário para a reação de splicing a progressão, e muitas proteínas adicionais a mais que vão e vêm durante a reação de agregação. Ele foi descrito como uma das ” máquinas mais complexas macromoleculares conhecidas”, composta por mais de 300 proteínas distintas e cinco RNAs“.
Os snRNAs realizam muitos dos eventos de reconhecimento de mRNA do spliceosome. Sequências de consenso local Splice são reconhecidas por fatores não-snRNP; a sequência de ramo de ponto é reconhecida pela proteína de ramo de ligação ponto-(BBP), e o aparelho de polipirimidina e 3 ‘local de splicing estão ligados por dois componentes proteicos específicos de um complexo de splicing referidos como U2AF (U2 fator auxiliar), U2AF65 e U2AF35, respectivamente.
Este é mais um grande exemplo de uma máquina molecular surpreendentemente complexa, que vai operar e exercer a sua função orquestrada precisa corretamente somente com todos os componentes totalmente desenvolvidos e formados e capazes de interagir de uma maneira altamente complexa, ordenada, precisa. Ambos, o software e o hardware, devem estar no local totalmente desenvolvidos, ou o mecanismo não iria funcionar. Nenhum estágio intermediário iria fazer o trabalho. E nem snRNPs (U1, U2, U4, U5 e U6) têm qualquer função, se não totalmente desenvolvidos. E mesmo se eles estivessem lá, sem a proteína ramo de ligação ponto-(BBP) no lugar, nada feito também, desde que o local de splicing correto não poderia ser reconhecido. E os íntrons e éxons não tinham que surgir em simultâneo com a spliceosome? Não admira, que o artigo científico: “Origem e evolução de íntrons spliceosomal” admite: Evolução da estrutura éxon-íntron dos genes eucarióticos tem sido uma questão de longa data, de debate intensivo, e conclui que: A elucidação do quadro geral da evolução da arquitetura gene eucarionte de maneira alguma implica que os principais problemas no estudo da evolução e função intron foram resolvidos. Muito pelo contrário, as questões fundamentais continua em aberto. Se a primeira etapa evolutiva teria sido o surgimento de íntrons self-splicing do Grupo II, então a questão se seguiria: Por que a evolução não parou por aí, já que esse método funciona muito bem?

 

3-05_The-Spliceosome

 

Não há roteiro crível, como íntrons e éxons, e a função de emenda poderia ter surgido de forma gradual. Que utilidade o spliceosome teria , se os elementos essenciais para reconhecer a sequência e fatia a ser cortada não estaria no lugar? O que aconteceria, se o mRNA com pré éxons e íntrons estivessem no local, mas o spliceosome não estivesse pronto no lugar para fazer a modificação pós-transcricional ? E nem o código de splicing, que direciona a maneira em que a emenda deve ser feita ?

 

No artigo: “junk” DNA ESCONDE INSTRUÇÕES DE MONTAGEM, o autor, Wang, observa que splicing “é um processo rigorosamente regulado, e um grande número de doenças são causadas pela” falha de regulação ‘de splicing em que o gene não foi cortado e colado corretamente. ” Splicing incorreta na célula pode ter conseqüências terríveis como o produto desejado não ser produzido, e muitas vezes os produtos errados podem ser tóxicos para a célula. Por esta razão, foi proposto que ATPases são importantes para mecanismos de revisão ” que promovem a fidelidade na selecção do local de splice. No livro Essentials of Molecular Biology , George Malacinski ressalta por que a produção de polipeptídeos adequados é fundamental:

“Uma célula não pode, evidentemente, se dar ao luxo de perder qualquer uma das junções de processamento por até mesmo um único nucleótido, porque isto poderia resultar numa interrupção da fase de leitura correta, levando a uma proteína truncada.”

 

 

Após a ligação destes componentes iniciais, o resto do aparelho de emenda monta-os em torno dos componentes do mRNA, e em alguns casos, até deslocando alguns dos componentes anteriormente ligados.

 

Pergunta: Como é que as informações para montar o aparelho de emenda corretamente surgiram gradualmente? A fim de fazer isso, tinham as peças para montar esta maquina nanomolecular formidável não ter que estar lá, no local da montagem, totalmente desenvolvidos e especificados e prontos para o recrutamento? Tinha a disponibilidade destes componentes não ter que ser sincronizada, de modo que, em algum ponto, quer individualmente ou em combinação, eles foram todos disponíveis, ao mesmo tempo? Tinha a montagem não ter que ser coordenada no modo e na maneira certa desde o início? As partes não tinham que ser compatíveis entre si, e capaz de corretamente ‘interagir’? Mesmo se os sistemas sub ou partes são colocados juntos na ordem certa, eles também precisam estar com a interface correta desde o primeiro momento.
Será que é imaginável que esta máquina complexa fosse o resultado de um desenvolvimento evolutivo progressivo, em que as moléculas simples são o início da cadeia de biossíntese e são, em seguida desenvolvidas progressivamente em passos sequenciais, se o objetivo final não é conhecido pelo processo e mecanismo de promoção do desenvolvimento? Como poderia cada produto intermediário no caminho ser um ponto final da via, se este ponto final intermediário não apresentava função? Cada ponto de desenvolvimento intermediário não tinha que ser utilizável como um produto final com aptidão de sobrevivência maior? E como poderia ser utilizável, se a cadeia de sequência de aminoácidos tinha apenas uma fracção da sequência totalmente desenvolvida? Conhecimento molecular é a quantidade mínima de informação útil para um gene necessário para ter qualquer função. Se um gene não contém conhecimento molecular, então ele não tem nenhuma função, ele não confere qualquer vantagem seletiva. Assim, antes de uma região do DNA conter o conhecimento molecular necessário, a seleção natural não desempenha nenhum papel em guiar a sua evolução.

 

Assim, o conhecimento molecular pode ser relacionado a uma probabilidade de evolução.
Como poderia passos sucessivos ser adicionados para melhorar a eficiência de um produto onde não havia nenhum uso para ele nesta fase? Apesar do fato de que os defensores do naturalismo abraçarem este tipo de cenário, parece óbvio que é extremamente improvável que seja possível desta maneira.

 

Martin e Koonin admitem em seu artigo “Hipóteses: Introns e a origem da compartimentalização núcleo-citoplasma,“: A transição para splicing-dependente do spliceosome também vai impor uma demanda implacável para invenções, além do spliceosome. E além disso: Mais recente é o reconhecimento que não há praticamente nenhum grau evolutivo detectável na origem do spliceosome, que aparentemente estava presente em seu estado de pleno direito no ancestral comum de linhagens eucarióticas estudadas até agora. Isso é uma admissão surpreendente.
Isto significa que o spliceosome apareceu completamente formado quase abruptamente, e que a invasão íntron teve lugar durante um curto período de tempo e não mudou em supostamente centenas de milhões de anos.

 

0266Em outro artigo interessante: Quebrando o segundo código genético, os autores escrevem : As instruções genéticas de organismos complexos exibem um recurso contra-intuitivo não compartilhado por genomas mais simples: sequências de nucleótidos que codificam uma proteína (éxons) são interrompidos por outras regiões de nucleótidos que parecem ter nenhuma informação (íntrons). Esta organização bizarra de mensagens genéticas forçam células a remover íntrons do mRNA precursor (pré-mRNA) e, em seguida, emendar juntos os éxons para gerar instruções traduzíveis. Uma vantagem do presente mecanismo é que ele permite que diferentes células para escolher meios alternativos de splicing de pré-mRNA e, assim, gera diversas mensagens a partir de um único gene. As variantes podem, em seguida codificar proteínas diferentes com funções distintas. Uma dificuldade com a compreensão de splicing alternativo de mRNA de pré-seleção é a de que os exões particulares em mRNAs maduros não são determinados apenas por sequências de intrões adjacentes aos limites de exão, mas também por uma série de outros elementos de sequências presentes em ambos os exões e intrões. Estas sequências auxiliares são reconhecidas por fatores reguladores que auxiliam ou impedem a função do spliceossoma – a maquinaria molecular responsável pela remoção do intrão.
Além disso, o acoplamento entre o processamento do RNA e transcrição do gene influencia o splicing alternativo, e dados recentes implicam a embalagem de DNA com proteínas histonas e modificações covalentes das histonas – o código epigenético – na regulação do splicing. A interação entre a histona e os códigos de emenda terá, portanto, que ser precisamente formulada nas abordagens futuras.
Pergunta: Como é que os mecanismos naturais forneceriam o ajuste fino, sincronização e coordenação entre a histona e os códigos de emenda? Em primeiro lugar, estes dois códigos e as proteínas transportadoras e moléculas (a hardware e software) teriam que emergir por eles mesmos, e em uma segunda etapa orquestrar a sua coordenação. Por que é razoável acreditar, que as reações químicas não guiadas, aleatórias seriam capaz de sair com funções organismal imensamente complexas?
Fazale Rana :

Surpreendente é o fato de outros códigos, tais como o código de ligação a histona, o código de ligação de fator de transcrição, o código de splicing, e o código de estrutura secundária de RNA, o código glycan, e o código de tubulins se sobrepoem ao código genético. Cada um destes códigos desempenha um papel especial na expressão do gene, mas eles também devem trabalhar em conjunto de forma coerente e integrada.

 

 

Obs: No texto postado pelo autor podes acessar aos links, referências.

As imagens do texto são a partir da web.