Em Defesa do Design Inteligente

Início » Genética

Arquivo da categoria: Genética

As células das plantas sobrevivem, mas param de se dividir em caso de dano ao DNA.

Por Science Daily

[Texto/título adaptados a partir do original – Imagem do Science Daily – esse artigo possui links que não estão presentes no artigo original]

Pesquisadores da NAIST mostram a via molecular pela qual as plantas interrompem a divisão celular após dano no DNA.

171006101817_1_540x360.jpg

Manchas verdes indicam um fator de transcrição que se acumula e inibe a divisão celular após dano no DNA. Os pesquisadores encontraram um papel indispensável do fator de transcrição na contenção do crescimento das plantas sob condições estressantes.                                                                                                                                    

 

 


 

 

O ciclo celular é o sistema ao qual uma célula cresce e se divide. É também a forma como uma célula passa seu DNA para sua progênie e é por isso que o ciclo celular para se o DNA for danificado, pois de outra forma corre o risco de passar esse dano às células filhas. Cientistas do Instituto Nara de Ciência e Tecnologia (NAIST em inglês) relataram um novo mecanismo molecular que explica como essa interrupção ocorre. O estudo, que pode ser lido na Nature Communications, mostra que a família de fatores de transcrição MYB3R evita a progressão para o estágio de divisão (fase M) do ciclo celular na Arabidopsis, uma pequena planta florida que é membro da família da mostarda. [Ênfase adicionada]

A inibição da divisão celular em resposta ao dano do DNA permite que as células mantenham a integridade do genoma. A inibição é regulada por diferentes moléculas em animais e plantas“, explica o professor da NAIST, Masaaki Umeda, que estuda o papel das células estaminais no crescimento da planta.

O MYB3R pode ser dividido em grupos de ativadores de transcrição (Act-MYB) e repressores de transcrição (Rep-MYB). As plantas crescem através da ponta da raiz e o broto terminal, mas não com danos no DNA. No estudo, o professor Umeda e seus colegas descobriram que o término do crescimento foi acompanhado por uma acumulação de proteínas Rep-MYB nessas regiões e que, ausente dessa acumulação, as plantas mostraram sinais de crescimento de folhas e flores.

Para entender como essa acumulação ocorre em resposta ao dano do DNA, os cientistas consideraram o papel do CDK, ou cinases dependentes de ciclina. Os CDKs são cruciais para a regulação do ciclo celular. O dano no DNA suprime a atividade do CDK, o que evita a progressão para a fase M. O professor Umeda descobriu que a inibição de CDKs mesmo com a ausência de dano no DNA, poderia causar a acumulação de Rep-MYB3R observada com danos no DNA e bloquearia o ciclo celular antes da transição da fase M. “Descobrimos que a atividade de CDK é necessária para a degradação de Rep-MYB em condições normais. A degradação é suprimida devido ao dano no DNA“, disse ele.

O estudo descobriu ainda que as proteínas Rep-MYB acumuladas, miram os genes responsáveis ​​pela transição da célula para a fase M. “O Rep-MYB tem uma série de genes G2 / M  específicos como alvo. Descobrimos que eles paralisam o crescimento da planta visando apenas um conjunto específico desses genes“, observa o Prof. Umeda.

O por que apenas um conjunto específico e não todos os seus genes-alvo ainda não está claro, embora o Prof. Umeda sugere que essa descoberta poderia ser a prova de que um cofator que interage com o Rep-MYB, possa determinar a seletividade. O professor Umeda diz que o estudo fornece um novo paradigma de como a divisão celular da planta é interrompida após o dano do DNA, evitando assim que as células danificadas se acumulem em condições estressantes. “Sem danos no DNA, o CDK evita a ativação do Rep-MYB, o que permite que o ciclo celular progrida para a divisão celular. O dano do DNA inibe a atividade CDK, liberando Rep-MYB e parando a divisão celular“, diz ele.


Journal Reference:

  1. Poyu Chen, Hirotomo Takatsuka, Naoki Takahashi, Rie Kurata, Yoichiro Fukao, Kosuke Kobayashi, Masaki Ito, Masaaki Umeda. Arabidopsis R1R2R3-Myb proteins are essential for inhibiting cell division in response to DNA damageNature Communications, 2017; 8 (1) DOI: 10.1038/s41467-017-00676-4
Anúncios

Bactérias Intestinais Que “Falam” Com Células Humanas Podem Levar A Novos Tratamentos.

Por Science Daily

[Obs: Texto adaptado – Imagem do Science Daily]

170830141248_1_540x360.jpg

 

Data: 30 de agosto de 2017

Fonte: Universidade Rockefeller

Resumo: Cientistas desenvolveram um método para engenharia genética de bactérias intestinais, para produzir moléculas que têm o potencial de tratar certos distúrbios, alterando o metabolismo humano.

 


 

Temos uma relação simbiótica com os trilhões de bactérias que vivem em nossos corpos – elas nos ajudam, nós as ajudamos. Acontece que eles até falam o mesmo idioma. E novas pesquisas da Universidade Rockefeller e da Icahn School of Medicine no Mt. Sinai, sugerem que essas coisas comumente descobertas, podem abrir a porta para a flora intestinal “projetada” que pode ter efeitos terapeuticamente benéficos contra doenças.

Nós chamamos isso de mimetismo“, diz Sean Brady, diretor do Laboratório de Moléculas Pequenas Codificadas Geneticamente da Universidade Rockefeller [Rockefeller University’s Laboratory of Genetically Encoded Small Molecules], onde a pesquisa foi conduzida. O avanço foi descrito em um artigo publicado nesta semana na revista Nature.

Em uma “descoberta de *cano duplo (*arma)”, Brady e o co-investigador Louis Cohen descobriram que bactérias intestinais e células humanas, embora tenham muitas diferenças, falam aquilo que é basicamente a mesma linguagem química, com base em moléculas chamadas ligantes[ligandos]. Com base nisso, eles desenvolveram um método para engenharia genética das bactérias para produzir moléculas que têm o potencial de tratar certos distúrbios, alterando o metabolismo humano. Em um teste de seu sistema em camundongos, a introdução de bactérias intestinais modificadas levou a níveis reduzidos de glicose no sangue e outras alterações metabólicas nos animais.

Empreendimento molecular

O método envolve a relação de bloqueio e chave dos ligantes, que se ligam aos receptores nas membranas das células humanas para produzir efeitos biológicos específicos. Neste caso, as moléculas derivadas de bactérias estão imitando ligantes humanos que se ligam a uma classe de receptores conhecidos como GPCRs, para receptores acoplados à proteína G.

Muitos dos GPCRs estão relacionados a doenças metabólicas, diz Brady, e são os alvos mais comuns da terapia medicamentosa. E eles estão convenientemente presentes no trato gastrointestinal, onde as bactérias intestinais também são encontradas. “Se você vai falar com bactérias“, diz Brady, “você vai conversar com elas ali mesmo“. (As bactérias intestinais são parte do microbioma, a maior comunidade de micróbios que existem no e dentro do corpo humano).

Em seu trabalho, Cohen e Brady manipularam bactérias intestinais para produzir ligandos específicos, N-acil amidas, que se ligam a um receptor humano específico, GPR 119, que é conhecido por estar envolvido na regulação da glicose e do apetite, e já foi um alvo terapêutico para o tratamento de diabetes e obesidade. Os ligantes bacterianos que criaram revelaram-se quase idênticos estruturalmente aos ligantes humanos, diz Cohen, professor assistente de gastroenterologia na Icahn School of Medicine no Mt. Sinai.

Manipulando o sistema

Entre as vantagens de trabalhar com bactérias, diz Cohen, que passou cinco anos no laboratório de Brady como parte do Programa de Estudantes Clínicos da Rockefeller, é que seus genes são mais fáceis de manipular do que os genes humanos e já se sabe muito sobre eles. “Todos os genes para todas as bactérias dentro de nós foram sequenciados em algum momento“, diz ele.

Em projetos anteriores, pesquisadores do laboratório de Brady extraíram micróbios do solo em busca de agentes terapêuticos naturais. Neste caso, Cohen começou com amostras de fezes humanas em sua busca de bactérias intestinais com DNA que ele poderia criar. Quando as encontrou, ele os clonou e os embalou dentro da bactéria E. coli, que é fácil de cultivar. Ele poderia então ver quais moléculas as cepas de E. coli geradas estavam fazendo.

Embora sejam o produto de microorganismos não humanos, Brady diz que é um erro pensar nos ligandos bacterianos que criam no laboratório como estrangeiros. “A maior mudança de pensamento neste campo nos últimos 20 anos é que nossa relação com essas bactérias não é antagônica“, diz ele. “Elas são uma parte da nossa fisiologia. O que estamos fazendo é explorar o sistema nativo e manipulando-o para nossa vantagem“.

Este é o primeiro passo no que esperamos ser uma interrogação funcional em grande escala, sobre o que as moléculas derivadas de micróbios podem fazer“, diz Brady. Seu plano é expandir e definir sistematicamente a química que está sendo usada pelas bactérias em nossas entranhas para interagir conosco. Nossos ventres, afinal, estão cheios de promessas.

 

 


 

 

Journal Reference:

  1. Louis J. Cohen, Daria Esterhazy, Seong-Hwan Kim, Christophe Lemetre, Rhiannon R. Aguilar, Emma A. Gordon, Amanda J. Pickard, Justin R. Cross, Ana B. Emiliano, Sun M. Han, John Chu, Xavier Vila-Farres, Jeremy Kaplitt, Aneta Rogoz, Paula Y. Calle, Craig Hunter, J. Kipchirchir Bitok, Sean F. Brady. Commensal bacteria make GPCR ligands that mimic human signalling moleculesNature, 2017; DOI: 10.1038/nature23874

Micro RNA – As primeiras previsões da evolução.

Por Darwins Predictions – Cornelius Hunter

[Obs: Texto adaptado a partir do original – O texto original não tem imagens]

 

MiRNA_JRH.jpg

Os genes possuem informações que são usadas para construir moléculas de proteína e RNA que fazem várias tarefas na célula. Um gene é copiado em um processo conhecido como transcrição. No caso de um gene que codifica a proteína, a transcrição é editada e convertida em uma proteína em um processo conhecido como tradução. Tudo isso é guiado por elaborados processos regulatórios que ocorrem antes, durante e após essa sequência de transcrição, edição e tradução.

Por exemplo, trechos de nossos DNA, que foram considerados de pouca utilidade, têm um papel regulador importante. Este DNA é transcrito em vertentes de cerca de 20 nucleótidos, conhecido como micro RNA. Esses pequenos trechos se ligam e interferem com os transcritos de RNA – cópias de genes de DNA – quando a produção do gene precisa ser retardada.

Os Micro RNAs também podem ajudar a modificar o processo de tradução, estimulando o dimensionamento de quadros ribossômico programado. Dois microRNAs se juntam à transcrição de RNA resultando em uma forma de estrutura de RNA de pseudoknot, ou triplex, que faz com que o quadro de leitura ocorra. (Belew)

Os MicroRNAs não vêm apenas do DNA de uma célula. Os MicroRNAs também podem ser importados de células próximas, permitindo assim que as células se comuniquem e se influenciem mutuamente. Isso ajuda a explicar como as células podem se diferenciar em um embrião crescente de acordo com sua posição dentro do embrião. (Carlsbecker)

Os Micro RNAs também podem vir dos alimentos que comemos. Em outras palavras, o alimento não contém apenas carboidratos, proteínas, gorduras, minerais, vitaminas, etc; também contém informações – na forma desses fragmentos regulatórios de micro RNA – que regulam a produção de genes. (Zhang)

Enquanto os micro RNAs regulam a produção de proteínas, os próprios micro RNAs também precisam ser regulados. Portanto, existe uma rede de proteínas que controlam rigorosamente a produção de micro RNA, bem como a remoção deles. “Apenas a pura existência desses reguladores exóticos“, explicou um cientista, “sugere que nossa compreensão sobre as coisas mais básicas – como a forma como uma célula se liga e desliga – é incrivelmente ingênua.” (Hayden)

Duas predições básicas que a teoria evolutiva faz em relação aos micro RNAs são que (i) como toda a biologia, surgiram gradualmente através de variações biológicas ocorrendo aleatoriamente (como mutações) e (ii) como conseqüência dessa origem evolutiva, os micro RNAs devem formar um padrão que se aproxima do padrão de descendência comum da evolução. A ciência atual falsificou essas duas previsões.

É improvável que os micro RNAs tenham evoluído gradualmente através de mutações aleatórias, pois são necessárias muitas mutações. Sem a existência prévia de genes e o processo de síntese proteica, os micro RNAs seriam inúteis. E sem a existência prévia de seus processos regulatórios, os micro RNAs causariam estragos.

Dado o fracasso da primeira previsão, não é surpreendente que a segunda previsão também tenha falhado. As sequências genéticas de micro RNA não se enquadram no padrão de descendência comum esperado. Ou seja, quando comparados entre diferentes espécies, os micro RNAs não se alinham com a árvore evolutiva. Como um cientista explicou: “Olhei para milhares de genes de micro RNA e não consigo encontrar um único exemplo que apoie a árvore [evolutiva] tradicional“. (Dolgin)

Embora existam dúvidas sobre esses novos dados filogenéticos, “o que sabemos nesta fase“, explicou outro evolucionista, “é que temos uma incongruência muito séria“. Em outras palavras, diferentes tipos de dados relatam árvores evolutivas muito diferentes. O conflito é muito maior que as variações estatísticas normais.

 

treeoflifefo.jpg

 

Tem que existir“, acrescentou outro evolucionista, “outras explicações“. Uma explicação é que os micro RNAs evoluem de maneira inesperada. Outra é que a árvore evolutiva tradicional está errada. Ou os evolucionistas podem considerar outras explicações. Mas, em qualquer caso que seja, os micro RNAs são mais um exemplo de evidências que não se encaixam nas expectativas evolutivas. Mais uma vez, a teoria precisará ser modificada de forma complexa para se adequar às novas descobertas.

Entretanto, os cientistas estão descobrindo que a imposição do padrão de descendência comum, onde os micro RNAs devem ser conservados entre as espécies, está dificultando a pesquisa científica:

Esses resultados destacam as limitações que podem resultar da imposição de que os miRNAs sejam conservados nos organismos. Esses requisitos, por sua vez, resultarão em nossos miRNAs de organismos genuínos ausentes e talvez possam explicar por que muitos destes miRNAs novos não foram previamente identificados. (Londin)

A teoria evolutiva vem limitando a ciência. Embora o padrão de descendência comum tenha sido o guia desde os estudos iniciais do micro RNA, esses pesquisadores “se libertaram” dessa restrição, e isso está levando a um bom progresso científico:

Nos primeiros dias de campo do miRNA, houve uma ênfase na identificação de miRNAs que são conservados em organismos… No entanto, miRNAs de espécies específicas também foram descritos e caracterizados como sendo miRNAs que estão presentes apenas em uma ou poucas espécies do mesmo gênero. Portanto, aplicar um requisito de conservação de organismos durante as pesquisas com miRNA é uma barreira que limita o número de miRNAs potenciais que podem ser descobertos, deixando organismos e linhagens específicas de miRNAs ocultos. Em nosso esforço para caracterizar ainda mais o repertório de miRNA humano, nos desprendemos do requisito de conservação… Esses achados sugerem fortemente, a possibilidade de uma ampla gama de miRNA-ome de espécies específicas que ainda não foi caracterizado. (Londin)

As duas predições do micro RNA foram falsificadas e, de forma surpreendente, a hipótese evolutiva prejudicou a pesquisa científica de como os micro RNAs funcionam.

 


 

Referencias

Belew, Ashton T., et. al. 2014. “Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway.” Nature 512:265-9.

Carlsbecker, Annelie, et. al. 2010. “Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate.” Nature 465:316-21.

Dolgin, Elie. 2012. “Phylogeny: Rewriting evolution.” Nature 486:460-2.

Hayden, Erika Check. 2010. “Human genome at ten: Life is complicated.” Nature464:664-7.

Londin, Eric, et. al. 2015. “Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs.” Proc Natl Acad Sci USA112:E1106-15.

Zhang, L., et. al. 2012. “Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA.” Cell Research 22:107-26.

O Antigo Mistério Biológico Sobre A Organização Do DNA Agora Resolvido.

Por Science Daily 

[***Obs: Título e texto adaptados a partir do original – Imagem do SD]

Esticado, o DNA de todas as células do nosso corpo chegaria a Plutão. Então, como cada célula minúscula possui um comprimento de DNA de dois metros em seu núcleo, sendo o seu total de apenas um milésimo de milímetro? A resposta a este enigma biológico assustador, é fundamental para entender como a organização tridimensional do DNA no núcleo influencia nossa biologia, entender como nosso genoma orquestra nossa atividade celular, e como os genes são passados de pais para filhos.

170727141510_1_540x360.jpg

Agora, cientistas do Instituto Salk e da Universidade da Califórnia, em San Diego, forneceram pela primeira vez uma visão sem precedentes da estrutura 3D da cromatina humana – a combinação de DNA e proteínas – no núcleo das células humanas vivas.

No estudo do tour de force, descrito no Science em 27 de julho de 2017, os pesquisadores do Salk identificaram um novo corante de DNA que, quando emparelhado com microscopia avançada; uma tecnologia combinada chamada ChromEMT, permite uma visualização altamente detalhada da estrutura da cromatina nas células durante os estágios de repouso e miótico (divisão). Ao revelar a estrutura da cromatina nuclear em células vivas, o trabalho pode ajudar a reescrever o modelo de organização livro-texto do DNA e até mesmo mudar a forma como abordamos tratamentos para doenças.

Um dos desafios mais intratáveis na biologia é descobrir a estrutura de DNA de ordem superior no núcleo e como isso está ligado às suas funções no genoma“, diz o professor associado de Salk, Clodagh O’Shea, escritor no Howard Hughes Medical Institute Faculty e autor sênior do artigo. “É de grande importância, pois esta é uma estrutura de DNA biologicamente relevante, que determina a função e a atividade dos genes“.

Desde que Francis Crick e James Watson determinaram a estrutura primária do DNA como uma dupla hélice, os cientistas se perguntaram como o DNA é organizado para permitir que todo o seu comprimento se empilhe no núcleo, de modo que a máquina de cópia da célula possa acessá-lo em diferentes pontos do ciclo de atividades da célula. Os raios-X e a microscopia mostraram que o nível primário da organização da cromatina, envolve 147 bases de enrolamento de DNA em torno de proteínas para formar partículas de aproximadamente 11 nanômetros (nm) em diâmetro, chamadas nucleossomos. Acredita-se que esses nucleossomos, como “grânulos em um fio “, dobram-se em fibras discretas de diâmetro crescente (30, 120, 320 nm, etc.), até formar cromossomos. O problema é que ninguém viu cromatina nessas dimensões discretas intermediárias, em células que não são que quebradas e que seu DNA foi processado rigorosamente, de modo que, o modelo livro-texto da organização hierárquica de ordem superior da cromatina em células intactas, permaneceu sem verificação.

Para superar o problema da visualização da cromatina em um núcleo intacto, A equipe de O’Shea selecionou uma série de corantes candidatos, eventualmente encontrando um que poderia ser precisamente manipulado com luz para se submeter a uma complexa série de reações químicas que essencialmente “pintariam” a superfície do DNA com um metal para que sua estrutura local e polímero 3D A organização pode ser imaginada em uma célula viva. A equipe fez parceria com a Universidade da Califórnia, San Diego, professor e especialista em microscopia Mark Ellisman, um dos co-autores do papel, para explorar uma forma avançada de microscopia eletrônica que inclina amostras em um feixe de elétrons, permitindo que sua estrutura 3D seja reconstruída. A equipe de O’Shea chamou a técnica, que combina seu cromatógrafo com tomografia eletrônica, ChromEMT.

A equipe usou ChromEMT para imagem e medição da cromatina em células humanas em repouso e durante a divisão celular (mitose), quando o DNA é compactado em sua forma mais densa – os 23 pares de cromossomos mitóticos que são a imagem icônica do genoma humano. Surpreendentemente, eles não viram nenhuma das estruturas de ordem superior do modelo livro-texto em nenhum lugar.

O modelo livro-texto é uma ilustração de desenho animado por um motivo“, diz Horng Ou, um pesquisador associado do Salk e o primeiro autor do paper. “A cromatina que foi extraída do núcleo e submetida a processamento in vitro – em tubos de ensaio – pode não parecer cromatina em uma célula intacta, por isso é tremendamente importante poder vê-la in vivo“.

O que a equipe de O’Shea viu, tanto em células em repouso quanto em divisão, era a cromatina, cujas “esferas em uma corda” não formaram nenhuma estrutura de ordem superior, como os 30 ou 120 ou 320 nanômetros teorizados. Em vez disso, formou uma cadeia semi-flexível, que eles meticulosamente mediram como variando continuamente ao longo do seu comprimento entre apenas 5 e 24 nanômetros, dobrando e flexionando para atingir diferentes níveis de compactação. Isso sugere que é a densidade da embalagem da cromatina, e não uma estrutura de ordem superior, que determina quais áreas do genoma estão ativas e que são suprimidas.

Com suas reconstruções em microscopia 3D, a equipe conseguiu mover-se através de um volume de torções de cromatina de 250 nm x 1000 nm x 1000 nm, e vislumbra como uma molécula grande como a RNA polimerase, que transcreve DNA (cópias), pode ser direcionada pela densidade variável da embalagem da cromatina, como uma aeronave de vídeo-games que voa através de uma série de cânions, a um ponto específico do genoma. Além de aumentar o modelo de livros didáticos da organização do DNA, os resultados da equipe sugerem que controlar o acesso à cromatina pode ser uma abordagem útil para prevenir, diagnosticar e tratar doenças como o câncer.

Mostramos que a cromatina não precisa formar estruturas discretas de ordem superior para se adequarem ao núcleo“, acrescenta O’Shea. “É a densidade do empacotamento que pode mudar e limitar a acessibilidade da cromatina, proporcionando uma base estrutural local e global através da qual diferentes combinações de sequências de DNA, variações e modificações nucleossômicas podem ser integradas no núcleo para afinar requintadamente a atividade funcional e a acessibilidade de nossos genomas.

O trabalho futuro examinará se a estrutura da cromatina é universal entre os tipos celulares ou mesmo entre os organismos.

 


 

Journal Reference:

  1. Horng D. Ou, Sébastien Phan, Thomas J. Deerinck, Andrea Thor, Mark H. Ellisman, Clodagh C. O’Shea. ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cellsScience, 2017; 357 (6349): eaag0025 DOI: 10.1126/science.aag0025

Espécies Semelhantes Compartilham Genes Semelhantes. [As Primeiras Previsões da Evolução]

Por Darwins Predictions – Cornelius Hunter

[Texto adaptado]

 

 

A única figura no livro de Darwin, The Origin of Species, mostrou como ele imaginava as espécies se ramificando. As espécies semelhantes têm um antepassado comum relativamente recente e tiveram tempo limitado para divergirem umas das outras. Isso significa que seus genes devem ser semelhantes.

1200px-Origin_of_Species_title_page.jpg

Genes inteiramente novos, por exemplo, não teriam tempo suficiente para evoluir. Como François Jacob explicou em um paper influente de 1977: “A probabilidade de uma proteína funcional aparecer de novo por associação aleatória de aminoácidos é praticamente zero“. (Jacob) Qualquer gene recém-criado teria que surgir de uma duplicação e modificação de um gene pré-existente. (Zhou et al., Ohno) Mas esse novo gene manteria uma semelhança significativa com o seu gene progenitor. De fato, durante décadas, os evolucionistas mencionaram pequenas diferenças genéticas entre espécies semelhantes como uma confirmação dessa importante predição. (Berra, 20; Futuyma, 50; Johnson e Raven, 287; Jukes, 120; Mayr, 35)

MS-DAR-00121-000-p36-Tree-of-Life.jpg

Mas esta previsão foi falsificada, já que muitas diferenças genéticas inesperadas, foram descobertas entre uma ampla gama de espécies de uma mesma família. (Pilcher) Tanto quanto um terço dos genes em uma determinada espécie pode ser único, e mesmo diferentes variantes dentro da mesma espécie têm um grande número de genes únicos para cada variante. Variantes diferentes da bactéria Escherichia coli, por exemplo, têm centenas de genes únicos. (Daubin e Ochman)

Diferenças genéticas significativas também foram encontradas entre diferentes espécies de moscas da fruta. Milhares de genes apareceram em muitas espécies, e alguns genes apareceram em uma única espécie. (Levine et al.) Como um escritor científico colocou, “surpreendentes 12 por cento dos genes recentemente evoluídos nas moscas da fruta parecem ter evoluído a partir do zero“. (Le Page) Esses novos genes devem ter evoluído ao longo de alguns milhões de anos, um período de tempo considerado, anteriormente, à permitir apenas pequenas mudanças genéticas. (Begun et al., Chen et al., 2007)

Inicialmente, alguns evolucionistas pensaram que esses resultados surpreendentes seriam resolvidos quando mais genomas fossem analisados. Eles previam que cópias semelhantes desses genes seriam encontradas em outras espécies. Mas, em vez disso, cada novo genoma revelou ainda mais novos genes. (Curtis et al., Marsden et al .; Pilcher)

dnahead-640x353.jpg

Evolucionistas posteriores pensaram que esses genes únicos em rápida evolução, não deveriam codificar para proteínas funcionais ou importantes. Mas, novamente, muitas das proteínas únicas, foram, de fato, descobertas desempenhando papéis essenciais. (Chen, Zhang e Long 1010, Daubin e Ochman, Pilcher) Como um pesquisador explicou: “Isso vai contra os livros didáticos, que dizem que os genes que codificam funções essenciais foram criados num passado bem distante.” (Pilcher).

 


 

Referências:

Begun, D., H. Lindfors, A. Kern, C. Jones. 2007. “Evidence for de novo evolution of testis-expressed genes in the Drosophila yakuba/Drosophila erecta clade.” Genetics176:1131-1137.
 
Berra, Tim. 1990. Evolution and the Myth of Creationism. Stanford: Stanford University Press.
 
Chen, S., H. Cheng, D. Barbash, H. Yang. 2007. “Evolution of hydra, a recently evolved testis-expressed gene with nine alternative first exons in Drosophila melanogaster.” PLoS Genetics 3.
 
Chen, S., Y. Zhang, M. Long. 2010. “New Genes in Drosophila Quickly Become Essential.” Science 330:1682-1685.
 
Curtis, B., et. al. 2012. “Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs.” Nature 492:59-65.
 
Daubin, V., H. Ochman. 2004. “Bacterial genomes as new gene homes: The genealogy of ORFans in E. coli.” Genome Research 14:1036-1042.
 
Futuyma, Douglas. 1982. Science on Trial: The Case for Evolution. New York: Pantheon Books.
 
Jacob, François. 1977. “Evolution and tinkering.” Science 196:1161-1166.
 
Johnson, G., P. Raven. 2004. Biology. New York: Holt, Rinehart and Winston.
 
Jukes, Thomas. 1983. “Molecular evidence for evolution” in: Scientists Confront Creationism, ed. Laurie Godfrey. New York: W. W. Norton.
 
Le Page, M. 2008. “Recipes for life: How genes evolve.” New Scientist, November 24.
 
Levine, M., C. Jones, A. Kern, H. Lindfors, D. Begun. 2006. “Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression.” Proceedings of the National Academy of Sciences 103: 9935-9939.
 
Marsden, R. et. al. 2006. “Comprehensive genome analysis of 203 genomes provides structural genomics with new insights into protein family space.” Nucleic Acids Research34:1066-1080.
 
Mayr, Ernst. 2001. What Evolution Is. New York: Basic Books.
 
Ohno, Susumu. 1970. Evolution by Gene Duplication. Heidelberg: Springer.
 
Pilcher, Helen. 2013. “All Alone.” NewScientist January 19.

Zhou, Q., G. Zhang, Y. Zhang, et. al. 2008. “On the origin of new genes in Drosophila.” Genome Research 18:1446-1455.

 

 

Cientistas Descobrem Segredo Da Copiadora De Cromossomos.

Por Phys Org

[Obs: Texto adaptado – O Texto contem links em inglês – Imagem do P.O]

Cientistas da Universidade de Dundee resolveram um mistério sobre um dos processos mais fundamentais da biologia celular, em uma nova descoberta que esperam poder ajudar; um dia, a combater o câncer.

10-researchersl

O processo pelo qual as células copiam seus próprios cromossomos e, em seguida, fazem novas células é vital para toda a vida. Os cromossomos contêm o modelo genético que nos torna o que somos e esta informação deve ser copiada perfeitamente para que as novas células sobrevivam e executem a sua função. Quando o processo de cópia dá errado, pode levar ao câncer; como células anormais serem criadas.

As proteínas na célula se combinam para construir uma “máquina” molecular denominada replissoma, que desempenha um papel vital na cópia da dupla hélice do DNA que está no coração de cada cromossomo. O replissoma é construído apenas uma vez durante a vida de cada célula e, em seguida, é desmontado para garantir que as células façam apenas uma única cópia de cada cromossomo.

O professor Karim Labib e colegas da Escola de Ciências da Vida de Dundee já haviam estudado este processo em leveduras, o qual é apenas uma célula e é muito mais fácil de trabalhar do que as células humanas. Eles descobriram agora que as coisas são mais complicadas em animais, tendo pelo menos dois mecanismos de desmontagem diferentes. De extrema importância, o gene necessário para um destes processos é perdido em um número de cancros humanos, sugerindo uma nova abordagem através da qual esses tumores em particular poderiam ser tratados.

“Desde que Watson e Crick descreveram pela primeira vez a estrutura do DNA, sabemos que as células copiam os cromossomos, mas ainda estamos aprendendo como funciona”, disse o professor Labib.

“Ao olhar para levedura, que é muito semelhante geneticamente aos seres humanos, descobrimos que um dos muitos componentes do replissoma sofre uma mudança chamada “ubiquitinação“, após os cromossomos serem copiados, marcando o replissoma para a desmontagem pela maquina de reciclagem da célula. Isso é uma coisa boa, como estudos genéticos mostram; se o replissoma não é desmontado, mas ao invés disso, permanece colado aos cromossomos, então, isso pode levar a grandes problemas.”

“O que descobrimos agora é que a maquinaria que marca o replissoma de levedura para destruição não existe em animais, por isso tinha de haver algo a mais dirigindo este processo. Ao estudar um pequeno verme chamado Caenorhabditis elegans, descobrimos que os animais realmente têm dois mecanismos diferentes para a desmontagem do replissoma. Se um caminho falhar em fazer seu trabalho, o segundo entra em ação como um back-up.”

“O que torna isto particularmente interessante é que um gene necessário para o segundo mecanismo é conhecido por ser mutado em uma variedade de cancros humanos, incluindo alguns linfomas, glioblastomas e mielomas. Nosso trabalho com este gene em vermes sugere uma nova maneira de tratar os cancros correspondentes em humanos.”

“Se inativarmos parcialmente os genes envolvidos no primeiro ou no segundo caminho para a desmontagem do replissoma, verificamos que os vermes ficam bem, mas se inibirmos ambos ao mesmo tempo, é letal. Traduzindo essa ideia para os seres humanos, uma droga que inibe o primeiro caminho deve matar especificamente células tumorais que não têm o segundo caminho, sem ferir o resto do corpo.”

O trabalho é outro passo significativo para a compreensão dos processos no coração das células humanas, vitais para o desenvolvimento de novos tratamentos para combater doenças. Em quase todos os casos de desenvolvimento de câncer, os erros na máquina copiadora de cromossomos pode ser visto nos estágios iniciais.

“Uma das metas na pesquisa do câncer, é entender a biologia normal que vai mal em células cancerosas, porque só então podemos procurar melhores maneiras de matar as células cancerosas sem ferir o resto do nosso corpo”, continuou Professor Labib. “Esta área de replicação cromossômica tem sido de grande interesse no último par de décadas, onde descobrimos mais e mais sobre como isso funciona.”

“A má copia do cromossomo leva a mutações e mutações levam ao câncer. Células dividem quando não deve e perdem a identidade, levando a quebrar-se e a flutuar em partes do nosso corpo no sangue e a metástase do sistema linfático ocorre.”

“O desafio no tratamento do câncer é encontrar uma maneira de matar parte de você sem matar você [todo]. O objetivo é encontrar formas mais inteligentes de quimioterapia que mata as células cancerosas, porém não as mais saudáveis. O problema é que elas têm o mesmo DNA, como você, então o que precisamos fazer é descobrir o que as torna diferentes e mirar qualquer calcanhar de Aquiles que achamos que podemos encontrar “.

O artigo foi publicado na última edição da revista Nature Cell Biology.


Mais informações: Remi Sonneville et al. CUL-2LRR-1 and UBXN-3 drive replisome disassembly during DNA replication termination and mitosis, Nature Cell Biology (2017). DOI: 10.1038/ncb3500

Journal reference: Nature Cell Biology.

PRIMEIROS PASSOS NA DANÇA DA REPLICAÇÃO DO DNA HUMANO CAPTURADOS EM RESOLUÇÃO ATÔMICA.

Por Phys.Org

[Texto adaptado – Esse artigo contem links em inglês – Imagem do Phys.Org]

 

 

firststepsin.jpg

O complexo ORC dos humanos quando totalmente montado, fica em forma de anel, como mostrado nessas imagens em resolução atômica, fixado através de cristalografia de raios-x e miscrocopia crio-eletrônica. Imagem inferior: O DNA (cinza) se encaixa através do “anel” como um parafuso se encaixa confortavelmente através do centro de uma porca. Crédito: Joshua-Tor Lab, CSHL.


É uma coisa boa não termos que pensar em colocar todas as peças necessárias no lugar, quando uma de nossas trilhões de células precisa duplicar seu DNA e, em seguida, dividir para produzir células filhas idênticas.

Nós nunca seríamos capazes de acertar. O processo é tão complexo, exigindo a orquestração de mais de uma centena de proteínas altamente especializadas, cada uma das quais deve desempenhar o seu papel precisamente no momento certo e na adequada orientação espacial. Muitas vezes tem sido comparado a uma dança molecular requintadamente coreografada. Os erros menores, não corrigidos, podem ter consequências mortais. É essencial que o genoma replique uma vez e apenas uma vez durante cada ciclo de divisão celular.

Na revista eLife, uma equipe de biólogos co-liderada pelo professor e Investigador HHMI Leemor Joshua-Tor do Cold Spring Harbor Laboratory (CSHL) e o Presidente e também Professor da CSHL, Bruce Stillman publicou fotos em resolução atômica do complexo de proteínas multiparte que executa o primeiro passo na dança da replicação genômica. As imagens da versão humana deste complexo, chamado ORC – complexo de reconhecimento de origem – mostram-no em seu modo ativo.

Os complexos ORC se auto reúnem no núcleo celular e se ligam em locais específicos chamados locais de início ou origens ao longo da dupla hélice em cromossomos. Em células humanas, o ORC reúne literalmente milhares de locais de origem em todo o genoma, para formar uma configuração inicial chamada complexo de pré-replicação, ou pré-RC. Uma vez montados, estes pré-RCs são como nadadores olímpicos altamente preparados de pé no bloco de partida, esperando o sinal para iniciar a corrida.

Como nadadores rápidos, cada complexo precisa de combustível para recrutar seu “motor” que abre as duas vertentes da dupla hélice. No caso do ORC é a ATP, ou adenosina trifosfato. Na fase ativa da ORC, os pesquisadores mostraram que um subconjunto contendo subunidades de ORC 1,2,3,4 e 5 envolve múltiplas moléculas de ATP e forma um complexo em forma de anel parcial. A ATP também é usada para recrutar outro componente de proteína chamado CDC6, transformando o anel aberto em um anel fechado. Neste momento, o conjunto de várias partes está engatado e ligado à dupla hélice, que passa através do centro do anel como um parafuso através do centro de uma porca. O anel é designado para o DNA caber confortavelmente.

O ORC foi descoberto em 1991 no laboratório de Stillman. “Bruce fez sua descoberta inicial do ORC em levedura“, observa Joshua-Tor, “e sabemos por muitos anos que existem grandes semelhanças estruturais no complexo ORC em organismos vastamente diferentes, de levedura a moscas e a mamíferos. Nossas novas imagens ajudam a explicar o que parecia ser diferenças de forma entre ORC em moscas da fruta e em seres humanos.

Usando as ferramentas de biologia estrutural – cristalografia de raios-x e microscopia crio-eletrônica (cryo-EM- abreviação em inglês) – a equipe mostrou que as diferenças são análogas às diferenças entre uma pessoa representada em pé e uma foto em execução. A melhor estrutura de ORC da mosca foi capturada em uma fase inativa, enquanto a estrutura recentemente publicada capta o complexo em células humanas na configuração que ele assume ao executar sua função – a ligação ao DNA.

As primeiras imagens da ORC eram de baixa resolução e como “blobby” (tipo uma bolha), diz Joshua-Tor. As novas imagens tornam claro como ATP se liga em posições em uma parte principal da montagem ORC, consistindo de subunidades de proteínas chamadas ORC1, ORC4 e ORC5. Este é o “módulo de motor” do ORC e não pode ser estabilizado para imagens sem ATP “a bordo”. A outra grande montagem consiste em ORC2 e ORC3. O ORC atinge a sua configuração em forma de anel quando a proteína CDC6 é recrutada, deslizando entre as subunidades ORC1 e ORC2.

Imagens de alta resolução do ORC humano ativo, publicada pela equipe, ajudam a resolver três grandes mistérios. “Elas nos ajudam a entender como o DNA pode se ligar com o ORC, como o ATP combustível é usado e como mutações em proteínas no complexo ORC dão origem a doenças humanas“, diz Joshua-Tor.

Um distúrbio interessante conhecido por ser causado por mutações no complexo ORC é chamado de síndrome de Meier-Gorlin, que envolve nanismo grave (baixa estatura) e microcefalia (cérebro pequeno). A equipe produziu um ORC que tem várias de suas proteínas componentes contendo mutações encontradas em pacientes Meier-Gorlin. “Descobrimos que uma dessas mutações mata completamente a atividade ATP“, relata Joshua-Tor, prejudicando assim a ORC em seu papel de replicação do genoma. As crianças com esta mutação têm uma cópia boa e uma cópia defeituosa, rendendo essencialmente a metade do ORC necessário, tendo por resultado seu tamanho pequeno do corpo e do cérebro. Outra mutação tornou o módulo de motor ORC 1,4,5 hiperativo, mas quando adicionado ao ORC 2,3 fez o complexo completo menos ativo do que o normal. Esses detalhes estruturais ajudam a explicar por que ocorre a síndrome de Meier-Gorlin. O bom funcionamento da ORC é importante para evitar muitas outras doenças, incluindo o cancro.

Talvez as percepções mais amplas oferecidas pelas novas imagens humanas da ORC sejam evolutivas. Embora o ORC em leveduras primitivas e seres humanos complexos opere de forma diferente – a proteína de levedura é estável durante a divisão celular, enquanto em humanos é dinamicamente montado e desmontado – eles são “notavelmente semelhantes” em aspectos importantes, observam os pesquisadores. [Enfase desse blog]

Ambos são altamente similares a outra máquina ATP-driven que também carrega uma proteína em forma de anel no DNA, os carregadores de grampos de DNA polimerase, mostrando que estas máquinas moleculares que carregam proteínas em forma de anel no DNA foram reutilizadas para múltiplos estágios de replicação do DNA”, escreve a equipe. Ambos agem como interruptores moleculares que hidrolizam a energia do ATP para bloquear anéis de proteína no DNA de fita dupla.


Journal reference: eLife

Mais Informações: “Structure of the active form of human origin recognition complex and its ATPase motor module” is published in eLife. The authors are: Ante Tocilj, Kin Fan On, Zuanning Yuan, Jingchuan Sun, Elad Elkayam, Huilin Li, Bruce Stillman and Leemor Joshua-Tor. elifesciences.org/content/6/e20818


Considerações deste blog:

Como você pode perceber, o artigo possui vasta linguagem teleológica. Mas o paradigma vigente em biologia, parece exigir a crença a priori na evolução. E bastando você confirmar a evolução, então o artigo, automaticamente, supostamente não coloca em dúvida a evolução, e pode então, ser publicado. Porém se formos rigorosos, vemos que isso, a linguagem descaradamente teológica, é como uma heresia; uma heresia contra o materialismo filosófico, contra o naturalismo metafísico, contra o fisicalismo.     search and more info

 

 

 

Visualizando o genoma: Primeiras estruturas 3D de DNA ativo são criadas.

Por Science Daily 

[Obs: Texto adaptado – Vídeos em inglês – Imagem do Science Daily com os devidos crétitos]

170313135018_1_540x360.jpg

Genoma intacto de uma determinada célula estaminal embrionária de rato. Cada um dos  20 cromossomos estão coloridos de forma diferente.

Cientistas determinaram as primeiras estruturas tridimensionais de genomas intactos de células individuais de mamíferos, mostrando como o DNA de todos os cromossomos se dobram intrincadamente, para se encaixar dentro dos núcleos das células.

Pesquisadores da Universidade de Cambridge e do MRC Laboratório de Biologia Molecular usaram uma combinação de imagens e até 100.000 cálculos de onde diferentes partes do DNA estão próximas umas das outras para examinar o genoma em uma célula-tronco embrionária de ratos. As células-tronco são “células-mestre“, que podem se desenvolver – ou “diferenciar” – em quase qualquer tipo de célula dentro do corpo.

A maioria das pessoas estão familiarizadas com a bem conhecida forma ‘X’ dos cromossomos, mas na verdade os cromossomos só assumem essa forma quando a célula se divide. Usando sua nova abordagem, pesquisadores agora foram capazes de determinar as estruturas de cromossomos ativos dentro da célula, e como eles interagem uns com os outros para formarem um genoma intacto. Isso é importante porque o conhecimento da forma como o DNA se dobra dentro da célula permite que cientistas estudem como genes específicos e as regiões de DNA que os controlam, interagem uns com os outros. A estrutura do genoma controla quando e com que intensidade os genes – regiões particulares do DNA – são ligados ou desligados. Isto desempenha um papel crítico no desenvolvimento dos organismos e também, quando dá errado, em doenças.

Os pesquisadores têm ilustrado a estrutura ao acompanhar os vídeos, que mostram o genoma intacto de uma célula-tronco embrionária de ratos. No filme, acima, cada um dos 20 cromossomos da célula estão coloridos de forma diferente.

Em um segundo vídeo, as regiões dos cromossomos onde os genes são ativos, elas estão na cor azul, e as regiões que interagem com a lâmina nuclear (uma rede fibrilar densa dentro do núcleo) são amarelas. A estrutura mostra que o genoma está disposto de tal modo, que as regiões genéticas mais ativas estão no interior e separadas no espaço a partir das regiões menos ativas que se associam com a lâmina nuclear. A segregação consistente dessas regiões, da mesma forma em todas as células, sugere que esses processos poderiam conduzir ao dobramento do cromossomo e do genoma e assim regular eventos celulares importantes, como replicação do DNA e divisão celular.

O professor Ernest Laue, cujo grupo no Departamento de Bioquímica de Cambridge desenvolveu a abordagem, comentou:

“Saber onde estão todos os genes e elementos de controle em um dado momento nos ajudará a entender os mecanismos moleculares que controlam e mantêm sua expressão.

No futuro, vamos ser capazes de estudar como isso muda à medida que as células-tronco se diferenciam e como as decisões são tomadas em células-tronco individuais em desenvolvimento. Até agora, só pudemos observar grupos, ou “populações”, dessas células e, portanto, não conseguimos ver diferenças individuais, pelo menos do lado de fora. Atualmente, esses mecanismos são mal compreendidos e compreendê-los pode ser fundamental para a realização do potencial das células estaminais na medicina.” [Enfase deste blog]

A pesquisa, realizada por cientistas dos Departamentos de Bioquímica, Química e do Wellcome-MRC Stem Cell Institute da Universidade de Cambridge, juntamente com colegas do Laboratório de Biologia Molecular do MRC, foi publicada (13.Mar.2017) hoje na revista Nature.

O Dr. Tom Collins, da equipe de Genética e Ciências Moleculares da Wellcome, disse:

“Visualizar um genoma em 3D com um nível de detalhe sem precedentes é um passo emocionante na pesquisa e que já está sendo realizado há muitos anos. Os princípios subjacentes que regem a organização dos nossos genomas – por exemplo, como os cromossomos interagem ou como a estrutura pode influenciar se os genes são ligados ou desligados. Se pudermos aplicar este método para células com genomas anormais, como as células cancerosas, podemos ser capazes de entender melhor, o que exatamente, dá errado, causando doenças, e como nós poderíamos desenvolver soluções para corrigir isso.

Vídeo 1: https://www.youtube.com/watch?v=1Fyq9ul9N9Q

Vídeo 2: https://www.youtube.com/watch?v=zBzdvhwtG5A


 

 

Story Source:

Materials provided by University of Cambridge. Note: Content may be edited for style and length.

Journal Reference:

  1. Stevens, TJ et al. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature, 3 March 2017 DOI: 10.1038/nature21429

Processo de tomada de decisão de vírus poderia levar a novos tratamentos com antibióticos.

By Science Daily

[ Obs: Texto adaptado a partir do original – Este blog não defende o evolucionismo, ao contrário, defende o design inteligente, sendo assim, não está de acordo com a assertiva não justificada do artigo a seguir, no tocante ao paradigma vigente, com seu profundo viés materialista, naturalista, fisicalista – A primeira imagem é do SD ] 

 

 

170206130405_1_540x360.jpg
O fago lambda prefere destruir a bactéria E. coli, o que o torna o alvo principal para os pesquisadores. Dr. Lanying Zeng, à esquerda, e seu estudante de pós-graduação Jimmy Trinh desenvolveram um sistema repórter de fluorescência de quatro cores para rastreá-lo no nível de vírus único.

 

 

Os seres humanos enfrentam centenas de decisões todos os dias. Mas não estamos sozinhos. Mesmo os vírus mais ínfimos também tomam decisões, e os cientistas estão pesquisando como eles fazem isso, para ajudar a levar a melhores tratamentos para algumas doenças. Uma equipe de cientistas descobriu como o fago lambda decide quais ações tomar em seu hospedeiro, a bactéria E. coli.

Em um estudo publicado em 6 de fevereiro na revista Nature Communications, a Dr. Lanying Zeng e sua equipe no Texas A & M AgriLife Research descobriram como o fago lambda decide quais ações tomar em seu hospedeiro, a bactéria E. coli.

Um fago é um vírus que infecta e se replica dentro de uma bactéria. Os fagos foram descobertos há cerca de 100 anos, mas recentemente cientistas começaram a estudar como eles podem ser usados para atacar bactérias causadoras de doenças, especialmente as cepas que se tornaram mais resistentes aos antibióticos.

Os fagos são muito diversos e numerosos – com números na casa dos bilhões, de acordo com vários relatórios na Biblioteca Nacional dos EUA – por isso os pesquisadores estão agora na trilha de fagos que têm potencial para curar doenças bacterianas específicas.

O fago lambda, por exemplo, prefere destruir a bactéria E. coli, o que o torna alvo principal para os pesquisadores. No rastreamento desse alvo, o estudante de pós-graduação Zeng Jimmy Trinh desenvolveu um sistema repórter fluorescente de quatro cores para rastreá-lo no nível de vírus único. Isso foi combinado com modelos computacionais desenvolvidos pelo Dr. Gábor Balázsi, engenheiro biomédico e colaborador da Stony Brook University, em Stony Brook, Nova York, “para desvendar tanto as interações entre os fagos quanto a forma como os fagos individuais determinam” o destino de uma célula.

O que eles descobriram não era diferente do processo decisório dos humanos. Às vezes, o fago lambda coopera com os outros. Às vezes compete.

Em vez de apenas a célula tomar uma decisão, descobrimos que os próprios DNA fágicos também tomam decisões“, disse Zeng.

 

f-d-0af319c1f63d9f6a49d9b6245463fc8fea256fd364c6a8e427999d1d+IMAGE_THUMB_POSTCARD+IMAGE_THUMB_POSTCARD.jpg

 

Através do processo que desenvolveram, os cientistas foram capazes de determinar que o tempo teve um papel na tomada de decisões.

Zeng explicou que alguns fagos podem ter dois ciclos de reprodução: lítico e lisogênico.

No ciclo lítico, cópias completas do vírus são feitas dentro de uma célula, digamos uma célula de E. coli. Quando a célula infectada com fagos fica cheia dos vírus de replicação, ela explode e é destruída. No ciclo lisogênico, o DNA do fago vive como parte da própria bactéria e ambos continuam a reproduzir-se como um só. Em resumo, a lise envolve a competição, enquanto a lisogenia envolve cooperação, disse ela.

Assim, uma chave para usar fagos para destruir bactérias, Zeng disse, é entender como e quando um fago decide a via lítica [ “go lytic” ] sobre o patógeno.

Digamos que você tem dois fagos lambda que infectam uma célula“, disse ela. ” Cada DNA de fago dentro da célula é capaz de tomar uma decisão. Queremos saber como eles tomam uma decisão, se um é mais dominante do que o outro, se eles têm alguma interação e competem para ver quem vai ganhar, ou se eles comprometem .

Eles podem até coexistir por algum tempo e depois finalmente escolher uma decisão“, disse ela. “Mas o fago está tomando uma decisão subcelular – e isso é muito importante, pode haver muitas implicações“.

O sistema repórter fluorescente de quatro cores ajudou os pesquisadores a visualizarem que muitos fatores contribuem para a decisão e que “do ponto de vista evolutivo, os fagos querem otimizar sua própria aptidão ou sobrevivência[como dito na observação sobre este artigo, o blog não compactua do paradigma vigente, e sugiro a leitura disto ], disse ela. “Então é por isso que eles escolhem lítico ou lisogênico para maximizar ou otimizar sua sobrevivência.

A equipe identificou alguns dos fatores que levaram à competição e outros que levaram à cooperação.

Zeng disse por que a terapia do fago é um campo crescente para procurar maneiras de tratamento contra as bactérias, os resultados deste estudo ajudarão outros cientistas avançarem em suas pesquisas.

Este é um paradigma para os bacteriófagos“, disse ela. “Quando compreendemos mais o mecanismo da decisão, isso pode levar a mais aplicações e a uma melhor caracterização de outros sistemas“.

 


 

Journal Reference:

  1. Jimmy T. Trinh, Tamás Székely, Qiuyan Shao, Gábor Balázsi, Lanying Zeng. Cell fate decisions emerge as phages cooperate or compete inside their host. Nature Communications, 2017; 8: 14341 DOI: 10.1038/ncomms14341

 

 

 

Testando a complexidade irredutível?

Por Evolution News – Ann Gauger

[ Obs:Texto adaptado – Titulo original: #7 of Our Top Stories of 2016: An Engineered “Minimal” Microbe Is Evidence of Intelligent Design – Imagem do EnV com os devidos créditos ]

syn-3-0bmat09-colored

 

 

O artigo a seguir foi publicado originalmente em 24 de março de 2016:

Science Magazine publicou um artigo na semana passada, “Design e síntese de um genoma bacteriano mínimo“, descrevendo a criação de uma bactéria com um genoma “descascado”. O artigo representa vinte anos de trabalho de muitos cientistas, incluindo o célebre bioquímico J. Craig Venter. Eles conseguiram reduzir o genoma quase na metade, de mais de 900 genes para 473, um pouco de cada vez. O papel borrifou pela Internet (ver, por exemplo, artigos da Associated Press e Bloomberg   o link original da AP está dando erro, mas mantive o link da AP, que apenas mostra a pagina da AP,  porque no original deste texto ele ainda está lá)

Por que diabos os pesquisadores farão tal coisa? A esperança é que esta bactéria mínima irá fornecer um veículo útil para a futura biologia sintética, permitindo a produção de medicamentos úteis para tratar doenças.

Mas há outra razão deles gastarem vinte anos neste projeto. É uma tentativa de responder a uma pergunta básica. Qual é a quantidade mínima de informação genética necessária para obter uma célula em funcionamento? Estimativas variaram de 250 a 300 genes, dependendo do tipo de célula e onde eles estão vivendo. Para a bactéria M. mycoides, o ponto de partida de seu trabalho, a resposta parece ser cerca de 470 genes. Os cientistas querem saber a resposta, porquanto a célula simplificada pode permitir que eles desvendem como os genes interagem e o que todos fazem. É mais fácil lidar com 400 genes do que com mais de 900, ou no caso da bactéria comum E. coli, mais de 4.000.

Este trabalho já produziu alguns resultados interessantes. Eles ainda não sabem o que 30% do genoma reduzido faz, apenas que os genes são essenciais. Em segundo lugar, os genes que parecem ser não essenciais por si só, podem tornar-se essenciais quando outro gene é excluído. Claramente, existem interações complexas acontecendo entre os 473 genes.

Tudo isso leva a uma pergunta óbvia. Esta pequena bactéria tem que ser capaz de copiar o seu DNA, transcrever e traduzi-lo em proteínas, além de ser capaz de coordenar todas as etapas envolvidas na divisão celular. Tem que ser capaz de fazer todas as coisas que não pode obter de seu ambiente. Isso é um monte de informações a serem armazenadas e usadas adequadamente. Daí 473 genes.

Mas de onde veio a célula, em primeiro lugar? É o problema da galinha e o ovo. Dado o número de coisas que a célula tem que fazer para ser um organismo em funcionamento, por onde começar? DNA ou RNA por si só não é suficiente, porque a proteína é necessária para copiar o DNA e para realizar processos celulares básicos. Mas a proteína não é suficiente por si só. O DNA é necessário para herdar de forma estável a informação genética sobre como produzir proteínas.

Algumas pessoas propõem que o RNA poderia fazer o truque, porque bastando somente as circunstâncias certas, e com a ajuda de um experimentador, o RNA pode copiar a si mesmo, parcialmente. A ideia é que, se apenas a sequência correta do RNA viesse junto, poderia servir tanto como uma enzima de RNA (ou ribozima) como o modelo para se reproduzir.

Isso deixa de lado problemas maiores. Ribozimas só podem realizar algumas reações químicas simples, enquanto mesmo uma célula mínima precisa de muitos tipos de reações. Em segundo lugar, como o interruptor ao DNA e às proteínas ocorreram? Ninguém tem uma pista. Por fim, não esqueçamos o problema da interdependência, ou da complexidade irredutível, como o bioquímico Michael Behe chama em seu livro Darwin’s Black Box. A célula mínima, ele escreve, é um sistema “composto por várias partes bem-correspondentes, em muitos casos, que contribuem para a função básica, em que a remoção de qualquer uma das partes faz com que o sistema deixe de funcionar efetivamente”.

Os sistemas irredutíveis são evidências de um design inteligente, porque somente uma mente tem a capacidade de projetar e programar uma rede tão interdependente e rica em informações como uma célula mínima.

Pense sobre o projeto de um carro básico. Você precisa de um motor, uma transmissão, um eixo de transmissão, um volante, eixos e rodas, além de um chassi para mantê-los todos juntos. Depois, vem o gás e uma maneira de começar tudo. (Eu, sem dúvida, deixei algo de fora, mas você entendeu meu ponto). Ter uma ou duas dessas coisas não vai fazer um carro funcional. Todas as peças são necessárias antes que ele seja usado. E é preciso um designer para imaginar o que é necessário, como ajustá-lo em conjunto, e depois construí-lo.

Se você está falando sobre um carro ou uma célula mínima, não vai ocorrer sem um designer.

 

Dois mecanismos revisam a tradução do DNA. Faça disso três.

Por Evolution News 

[ Obs: Titulo e texto adaptados a partir do original – O artigo possui links no original em inglês – Imagem do EnV com seus devidos créditos ]

obama_healthcare_speech_draft

A própria ideia de que as células revisam suas informações genéticas torna o design inteligente intuitivamente óbvio. Não se revisa jargão (linguagem sem nexo). Se as células tivessem pavimentado conjuntos aleatórios de blocos, não importaria realmente a ordem que em eles estivessem reunidos. Sabemos, é claro, que a sequência é importante: a maioria das mutações causam doença ou morte. Revisão é prova por excelência que a informação genética representa a informação real, do tipo encontrada nos livros e nos softwares. Defensores do DI não acham surpreendente, portanto, que as células vão muito longe para proteger suas informações genéticas.

O “controle de qualidade” celular tem sido reconhecido na literatura há algum tempo. De fato, o Prêmio Nobel de Química em 2015 foi para três cientistas que descobriram mecanismos de reparo do DNA. As células inspecionam e corrigem suas macromoléculas informacionais em todas as fases: na transcrição, na tradução e durante a modificação pós-tradução.

Existem máquinas moleculares em movimento inspecionando outras máquinas em trabalho na célula. Elas reconhecem as proteínas dobradas e as marcam para degradação. E quando a célula se divide, as máquinas moleculares verificam cada letra quando as cadeias do DNA são duplicadas. As células estão em atividade de “controle de qualidade”.

Revisão, no entanto, é um passo além da reparação. Uma célula pode reparar uma cadeia quebrada de DNA, sem levar em conta a sequência de “letras” nucleotídicas. A revisão real deve garantir a precisão da própria sequência. A célula verifica erros de digitação? Absolutamente.

Um artigo na Proceedings of the National Academy of Sciences compartilhou novas evidências que suportam a questão do design. Pesquisadores da Universidade de Uppsala, na Suécia, encontraram não apenas uma, mas duas etapas de revisão independente no ribossomo além da que já era conhecida.

Elas ocorrem onde transcritos de RNA mensageiro são traduzidos em proteínas. O título diz que: “Duas etapas de revisão amplificam a precisão da tradução de códigos genéticos”. Aqui está a declaração sobre o significado da descoberta:

Descobrimos que dois passos de revisão amplificam a precisão da leitura do código genético, não um passo, como até agora se acreditava. Nós caracterizamos a base molecular de cada um destes passos, pavimentando o caminho para a análise estrutural em conjunto com a estrutura baseada em cálculos de energia livre padrão. Nosso trabalho destaca o papel essencial do fator de alongamento Tu para a tradução precisa do código genético, tanto na seleção inicial quanto na revisão. Nossos resultados têm implicações para a evolução da leitura eficiente e precisa do código genético através da revisão em vários passos, o que atenua os efeitos, doutra forma prejudiciais, ocorrido na compensação obrigatória entre eficiência e precisão na seleção do substrato feito por enzimas. [Enfase adicionada.]

Se você se lembra da animação dos passos de tradução em Unlocking the Mystery of Life (Desbloqueando o Mistério da Vida), lembre-se que os transcritos do RNA mensageiro (mRNA) são lidos em conjuntos de três letras (codons). Correspondendo aos codões de mRNA, estão as moléculas de RNA de transferência (tRNA), cada uma equipada com um “anticodon” correspondente numa extremidade e um aminoácido na outra extremidade (quando carregadas, são chamadas aminoacil-tRNAs ou aa-tRNAs). Como os codões e anticódons se emparelham em arquivo único dentro do ribossomo, os aminoácidos se fixam em arquivo único com ligações peptídicas.  A crescente cadeia polipeptídica irá se tornar uma proteína após a tradução ser completada.  Adicionalmente, as “chaperonas” moleculares asseguram que as cadeias polipeptídicas resultantes sejam dobradas corretamente em máquinas moleculares funcionais.

A equipe de Uppsala examinou o ribossomo para dar uma olhada no passo onde o tRNA encontra o mRNA. Eles sabiam que a seleção do tRNA correto era um primeiro passo crucial, inicialmente previsto por Linus Pauling sete décadas atrás. Quando a precisão medida na tradução mostrou-se realmente maior do que Pauling predisse, os biólogos moleculares suspeitaram que algum tipo de mecanismo de correção de erro deveria estar funcionando. Um mecanismo de revisão foi posteriormente encontrado no ribossomo. Mas como isso funciona? Podemos nos relacionar com revisores humanos, mas como as moléculas sem olhos são corrigidas no escuro dentro de um ribossomo?

A amplificação de precisão por revisão exige que o descarte de substrato seja conduzido por uma diminuição do potencial químico desde a entrada de um substrato até sua saída ao longo do caminho de revisão. Uma maneira de programar tal queda no potencial químico é acoplar o descarte de substratos por revisão a hidrólise de GTP ou ATP com alto potencial químico com o baixo potencial químico de seus produtos hidrolíticos.

Resumindo, a revisão precisa ser eficiente em termos de energia, mas não acontecerá sem o gasto de uma molécula rica em energia para empurrá-la. A reação deve favorecer a obtenção da molécula certa onde ela pertence.

Os bioquímicos sabiam que cada aa-tRNA teria de ser preparada para o seu papel através da ligação a um assistente chamada Fator  Elongation Tu (EF-Tu), mais uma molécula de combustível, GTP. Mas, depois desse passo, os autores encontraram outros dois:

Descobrimos que o ribossomo bacteriano utiliza dois passos de revisão seguindo a seleção inicial de RNAs de transferência (tRNAs) para manter uma elevada precisão da tradução do código genético. Isto significa que existem três passos de seleção para o reconhecimento de codões feito por aa-tRNAs. Em primeiro lugar, existe uma seleção inicial de codões por aa-tRNA no complexo ternário com o fator de alongamento Tu (EF-Tu) e GTP. Em segundo lugar, há revisão do aa-tRNA no complexo ternário com EF-Tu e PIB. Terceiro, há revisão de aa-tRNA na forma EF-Tu-independente, presumivelmente após a dissociação de EF-Tu · GDP do ribossomo (Figura 1).

Isto amplifica significativamente a precisão da tradução. “Embora já tenha sido reconhecido que a revisão em vários passos confere maior precisão e eficiência cinética em substrato-seletivo, via reações catalisadas por enzimas do que passo único de revisão”, dizem eles, “tem sido tomado como certo que existe apenas um único passo de revisão na seleção de tRNA no ribossomo tradutor”.

As novas descobertas lançam nova luz sobre os passos moleculares reais, necessários para a correção de alta precisão. E, embora seu trabalho tenha sido feito em bactérias, “sugerimos que os mecanismos de revisão em dois estágios funcionem não apenas em bactérias, mas também em eucariotos e, talvez, em todos os três reinos da vida”.

Como um evolucionista explica isso? No início do artigo, eles dizem: “Sugerimos que a revisão em vários passos na tradução de códigos genéticos tenha evoluído para neutralizar possíveis pontos potenciais de erro, na seleção inicial do(s) aa-tRNA(s) propenso(s) a erro(s) no complexo ternário com EF-Tu e GTP”.

Mas isso não pode ser verdade. É uma declaração teleológica. A seleção natural não pode “evoluir para” fazer nada. Logo depois no artigo, eles se concentram mais na questão, apresentando o enredo como um conto de fadas evolutivo: “Por que a Mãe Natureza evoluiu duas etapas de revisão na tradução de códigos genéticos?”.

A existência de dois passos distintos de revisão pode parecer surpreendente, porque a precisão da seleção inicial do codão pelo complexo ternário é normalmente notavelmente alta. Por conseguinte, sugerimos que a revisão em dois passos evoluiu para neutralizar os efeitos deletérios de um pequeno número de pontos de erro distintos para a seleção inicial do codão observada in vitro e in vivo.

Isso deve causar ainda mais tristeza para o neodarwinismo, porque mostra que a revisão de um único passo “normalmente é notavelmente alta”.  Em essência, a célula verifica a sua tradução, já precisa. Eles realmente usam a palavra “revendo” para descrever isso. Eles estimam que a revisão forneça um aumento de milhões de vezes em precisão, muito acima da modesta amplificação de revisão na gama dos trezentos, observada aqui.

Além da descoberta inesperada de duas etapas de revisão, o presente estudo identificou a base estrutural do primeiro passo EF-Tu-dependente e sugeriu características mecanicistas de ambas as etapas de revisão. Esses achados facilitarão a análise estrutural das etapas de revisão, junto com cálculos baseados na estrutura de suas energias livres padronizadas que codificam codões, para uma compreensão mais profunda da evolução da leitura precisa do código genético.

Outros Exemplos de Sistemas Redundantes na Célula.

Este não é o único caso de sistemas múltiplos e independentes na célula. Três pesquisadores em Massachusetts, também publicando na Proceedings of the National Academy of Sciences , descobriram mecanismos redundantes para reparar rupturas de cadeia dupla no DNA.  As duas vias, NHEJ e MMEJ, podem funcionar como sistemas primários e de backup. “É possível que haja redundância parcial entre as vias NHEJ e MMEJ, com MMEJ servindo como um backup e NHEJ sendo o principal mecanismo.” O caminho do backup contribui para a reparação de algumas rupturas duplas, mas não todas. Posts anteriores aqui no Evolution News apontaram redundância em sistemas biológicos, como este, afirmando que os “caminhos são organizados em uma rede entrelaçada, muitas vezes redundante, com arquitetura que está intimamente relacionada com a robustez do processamento de informação celular”. Outro artigo apontou que os cromossomos parecem ter um sítio de backup para centrômeros.

O que aprendemos nesses artigos combina bem com o que David Snoke disse em um podcast do ID the Future sobre a Biologia de Sistemas como a maneira do engenheiro de olhar a vida (para mais, veja isto de Casey Luskin). Engenheiros entendem conceitos como backups, redundância, dupla verificação e controle de qualidade. Eles percebem que há tradeoffs entre precisão e velocidade, assim, eles buscam aperfeiçoar os requisitos de projetos concorrentes.

Em vez da visão de baixo para cima do reducionista, o biólogo de sistemas toma a visão de cima para baixo: como todos os componentes funcionam juntos como um sistema? Na prática, diz ele, os biólogos de sistemas procuram entender os seres vivos como exemplos de sistemas otimizados, e também a “engenharia reversa” deles de maneiras inovadoras. Em ambos os contextos, o design inteligente – não a evolução darwiniana – é o conceito operacional que conduz a ciência.

Como refutar o Design Inteligente?

Ao demonstrar um caso credível, empiricamente observado, em que o acaso cego e / ou necessidade mecânica cria organização complexa funcionalmente específica e informações associadas além de 500 – 1.000 bits … A premissa indutiva chave da teoria do projeto (ID), entra em colapso.

 

software-screen5

O DNA como uma arma de defesa imunitária.

Em Science Daily, 1 de Março, 2016. [Adaptado]

Trechos:

O nosso sistema imune inato, utiliza dois mecanismos. O primeiro mata corpos estranhos dentro do próprio fagócito. O segundo mata-os fora da célula. Microbiologistas descobriram que uma ameba social também usa ambos os mecanismos. Uma vez que esta ameba possui um sistema de defesa inata semelhante ao de seres humanos, e ao mesmo tempo geneticamente modificável, os investigadores podem, por conseguinte, levar a cabo experiências sobre ele, de modo a compreender e combater as doenças genéticas do sistema imunitário.

160301074240_1_540x360 Microbiologistas da Universidade de Genebra (UNIGE), Suíça, acabam de descobrir que uma ameba social, um micro-organismo unicelular que vive nos solos de florestas temperadas, também usa esses dois mecanismos, e tem feito isso há mais de um bilhão de anos.

Na verdade, eles (os micro-organismos) também usam redes de fagocitose e de DNA para exterminar as bactérias que possam pôr em causa a sobrevivência da lesma (inglês > slug). Assim, nós descobrimos que o que acredita-se ser uma invenção de animais superiores, é, na verdade, uma estratégia que já era ativa em organismos unicelulares, um bilhão de anos atrás “, explica Thierry Soldati, último autor do estudo.

Texto completo no link (em inglês).

O relógio molecular mantém o tempo evolutivo. – Primeiras previsões da evolução.

Por Cornelius Hunter – Darwins Predictions

Texto adaptado.

Na década de 1960 os biólogos moleculares aprenderam a analisar moléculas de proteínas e a determinar a sequência de aminoácidos que compreendem uma proteína. Foi então descoberto que uma determinada molécula de proteína varia um pouco de espécie para espécie. Por exemplo, a hemoglobina, uma proteína do sangue, tem função semelhante, a dimensão global e a estrutura em espécies diferentes. Mas a sua sequência de aminoácidos varia de espécie para espécie. Emile Zuckerkandl e Linus Pauling argumentaram que, se tais diferenças de sequência foram o resultado de mudanças evolutivas que ocorrem ao longo da história da vida, então elas poderiam ser usadas ​​para estimar eventos passados de especiação – uma noção que se tornou conhecida como o relógio molecular(Zuckerkandl and Pauling)

chapter-18-lecture-classification-33-728

Relógio Molecular

Em décadas posteriores este conceito de relógio molecular, baseando-se no pressuposto de uma taxa mais ou menos constante de evolução molecular, tornou-se fundamental na biologia evolutiva. (Thomas, et. al.) Como a Academia Nacional de Ciências explicou, o relógio molecular “determina relações evolutivas entre organismos, e indica o tempo no passado, quando as espécies começaram a divergir uma da outra.(Science and Creationism, 3) Na verdade, o relógio molecular foi exaltado como forte evidência de evolução e, na verdade, um sentimento comum foi de que a evolução era obrigada a explicar essas evidências. Como um evolucionista molecular líder escreveu, o relógio molecular é “compreensível apenas num quadro evolutivo.(Jukes, 119, ênfase no original)

A alegação de que o relógio molecular só pode ser explicado pela evolução é, no entanto, agora, um ponto discutível; como mostra o crescente número de evidência, que diferenças moleculares, muitas vezes não se encaixam no padrão esperado. O relógio molecular que os evolucionistas tinham imaginado não existe. A literatura está cheia de exemplos onde o conceito de relógio molecular falha. Por exemplo, verificou-se inicialmente que os diferentes tipos de proteínas devem evoluir a taxas muito diferentes, se houver um relógio molecular. Por exemplo, os (proteínas) fibrinopeptídios em várias espécies devem ter evoluído mais do que quinhentas vezes mais rápido do que a proteína histona IV. Além disso, verificou-se que a taxa de evolução de certas proteínas devem variar significativamente ao longo do tempo, entre diferentes espécies e entre diferentes linhagens. (Thomas, et. al.; Andrews, 28)

A proteína relaxina, a enzima superóxido dismutase (SOD) e a glicerol-3-fosfato desidrogenase (GPDH), por exemplo, todas contradizem a predição do relógio molecular. Por um lado, a SOD mostra inesperadamente muito maior variação entre os tipos semelhantes de moscas da fruta do que entre organismos muito diferentes, tais como animais e plantas. Por outro lado GPDH mostra a tendência oposta para a mesma espécie. Como um cientista concluiu, GPDH e SOD em conjunto, nos deixam “sem poder preditivo e sem relógio adequado.(Ayala)

Os evolucionistas estão encontrando cada vez mais, provas de que as taxas supostas de evolução molecular devem variar consideravelmente entre as espécies em uma ampla gama de táxons, incluindo mamíferos, artrópodes, plantas vasculares, e até mesmo entre linhagens estreitamente relacionadas. Como um estudo concluiu: “O falso pressuposto de um relógio molecular ao reconstruir filogenias moleculares pode resultar em topologia incorreta e estimativa de data tendenciosa. … Este estudo mostra que há uma variação significativa na taxa de todos os filos e na maioria dos genes examinados … (Thomas, et. al.)

gr1

 

Os evolucionistas continuam a utilizar o conceito de relógio molecular, mas os muitos fatores de correção destacam o fato de que as sequências de dados estão sendo adaptadas a teoria, ao invés do contrário. Como um evolucionista advertiu: “Parece desconcertante que existem muitas exceções à progressão ordenada de espécies como é determinada por homologias moleculares; tanto é verdade que eu acho que a exceção, as peculiaridades, podem carregar a mensagem mais importante.(Schwabe)

Referências:

Andrews, Peter. 1987. “Aspects of hominoid phylogeny” in Molecules and Morphology in Evolution, ed. Colin Patterson. Cambridge: Cambridge University Press.

Ayala, F. 1999. “Molecular clock mirages.” BioEssays 21:71-75.

Jukes, Thomas. 1983. “Molecular evidence for evolution” in: Scientists Confront Creationism, ed. Laurie Godfrey. New York: W. W. Norton.

Schwabe, C. 1986. “On the validity of molecular evolution.” Trends in Biochemical Sciences 11:280-282.

Science and Creationism: A View from the National Academy of Sciences. 2d ed. 1999. Washington, D.C.: National Academy Press.

Thomas, J. A., J. J. Welch, M. Woolfit, L. Bromham. 2006. “There is no universal molecular clock for invertebrates, but rate variation does not scale with body size.” Proceedings of the National Academy of Sciences 103:7366-7371.

Zuckerkandl, E., L. Pauling. 1965. “Molecules as documents of evolutionary history.” J Theoretical Biology 8:357-366.

Não é mais “lixo”: DNA misterioso tem papel fundamental em danos por acidente vascular cerebral.

MEDICAL XPRESS

Nota do editor:Títulos e artigo adaptados a partir do original. O original possui referências, bastando acessar o link. Os links do artigo estão em inglês.  A imagem também é do artigo original.

notjunkanymo

 

 

Um estudo sobre ratos divulgado hoje [15/12/2015], mostra que o bloqueio de um tipo de RNA produzido pelo o que se costumava ser chamado de “DNA lixo“, pode impedir uma parcela significativa da destruição neural que resulta em acidente vascular cerebral. A pesquisa aponta para um futuro tratamento de danos pós acidente vascular cerebral, que muitas vezes é mais extenso do que a destruição inicial, resultante da desativação temporária de sangue para o cérebro.

A pesquisa também liga dois mistérios: Por que a maioria dos danos seguem a restauração do fornecimento de sangue? E qual é o papel da grande maioria do genoma humano, uma vez que foi considerado lixo porque não tem o padrão do RNA que faz proteínas?

Menos de 2% dos RNAs formados a partir do genoma codificam para proteínas, deixando 98% dos quais chamamos de “RNA não-codificante”“, diz o autor sênior, Raghu Vemuganti, professor de na Universidade de Wisconsin-Madison.

No estudo publicado no Journal of Neuroscience, Vemuganti e colegas bloquearam uma variedade de RNA longos não codificadores (lncRNA), em que existe, pelo menos, 40.000 variedades únicas -possivelmente cerca de 100.000.

Este lncRNA pode ligar-se a outro ARN, a uma proteína, ou a uma proteína de um lado e do outro DNA“, diz Suresh Mehta (primeiro autor), um cientista do Departamento de Cirurgia Neurológica. Entre muitos outros trabalhos, lncRNAs podem regular a atividade do gene.

O acidente vascular cerebral influencia a expressão de todos os tipos de RNA, e este RNA tem uma influência ampla em toda a célula, depois que o  é restaurado; ao qual chamamos de “, diz Vemuganti.

Alguns anos atrás, nosso laboratório começou a observar como o  afeta o RNA não-codificante. Há dois anos, foram identificados cerca de 200 tipos de vários lncRNAs que aumentam ou diminuem consideravelmente após o acidente vascular cerebral, concentrando-se em um que nós nomeamos FosDT.

Sabíamos que o nível de FosDT havia subido mais de dez vezes no cérebro do rato dentro de três horas após o acidente vascular cerebral“, acrescenta Vemuganti. Nós pensamos assim: se bloquearmos o FosDT após o acidente vascular cerebral, isso faria qualquer diferença na quantidade de danos estruturais ou deficiência comportamental?

Vemuganti e seus colegas projetaram três fios de RNA personalizados para silenciar o FosDT, os injetaram em ratos, desligando deliberadamente uma artéria no cérebro, durante uma hora. Testes realizados na primeira semana mostraram que os ratos tratados recuperaram habilidades motoras de forma muito mais rápida e completa do que animais controlados. Os escaneamentos cerebrais mostraram uma redução significativa do volume total do cérebro que foi destruído pelo acidente vascular cerebral.

Estes estudos foram parcialmente financiados pela American Heart Association, National Institutes of Health, U.S. Department of Veterans Affairs e pelo Department of Neurological Surgery .

Outras investigações mostraram que o FosDT estimula um caminho para a morte celular, ao mesmo tempo que prejudica caminhos de sobrevivência celular. Interferindo com ambos os mecanismos, poderiam explicar os benefícios, diz Mehta.

Nós não mudamos a agressão inicial, causada pela falta de oxigênio“, diz Vemuganti, “mas esta abordagem orientada reduziu consideravelmente os danos após uma semana. Nós não podemos reverter completamente os danos pós acidente vascular cerebral, mas o dano total diminuiu em um terço. Se pudermos proteger ao máximo o tecido  do acidente vascular cerebral, isso será um enorme benefício.

Pelo fato dos danos pós acidente vascular cerebral (a “lesão de reperfusão”) poderem ser ainda mais incapacitantes do que os dano causados pela perda inicial de fluxo sanguíneo, Vemuganti diz que está buscando diversas linhas de pesquisas.Estamos explorando ainda mais o mecanismo, e estamos nos preparando para ver o que acontece depois de um acidente vascular cerebral em ratos que não possuem nenhum gene para o FosDT.

Embora as taxas de acidente vascular cerebral tenham caído nas últimas décadas, cerca de 795 mil norte-americanos têm um AVC a cada ano, e o acidente vascular cerebral continua entre as principais causas de incapacidade.

Temos a intenção de perseguir vigorosamente este achado“, disse Vemuganti.

Você pode saber mais sobre RNA não codificadores AQUI. (Jeph Simple)

Histonas não podem tolerar muitas mudanças – As primeiras previsões da evolução.

Por Darwins Predictions – Cornelius Hunter

histona-1

 

As histonas são proteínas que servem como cubos sobre os quais o ADN é envolvido. Elas são muito semelhantes entre espécies muito diferentes, o que significa que elas devem ter evoluído logo no início da história evolutiva. Como explica certo livro, As sequências de aminoácidos de quatro histonas são muito semelhantes entre espécies de parentesco distante.… A similaridade na seqüência entre histonas de todos os eucariotos indica que elas dobram-se em conformações tridimensionais muito semelhantes; a função das histonas foi otimizada cedo, na evolução de um ancestral comum de todos os eucariotos modernos. (Lodish et. al., Section 9.5) E essa grande similaridade entre as histonas também significa que elas não devem tolerar muito bem alterações, como um outro livro explica: “As alterações na sequência de aminoácidos são, evidentemente, muito mais prejudiciais para algumas proteínas do que para outras. … Praticamente todas as mudanças de aminoácidos são prejudiciais em histonas H4. Nós assumimos que os indivíduos que realizaram essas mutações nocivas foram eliminados da população através da seleção natural. “(Alberts et. al. 1994, 243)


Assim, a previsão da evolução é que nestas (proteínas) histonas, praticamente todas as alterações são prejudiciais: “Como pode ser esperado a partir do seu papel fundamental na embalagem do ADN, as histonas estão entre as proteínas eucarióticas mais altamente conservadas . Por exemplo, a sequência de aminoácidos da histona H4 de uma ervilha e uma vaca diferem em apenas 2 (duas) das 102 posições. Esta forte conservação evolutiva sugere que as funções da histonas envolvem quase todos os seus aminoácidos, de modo que uma alteração em qualquer posição é prejudicial para a célula. “(Alberts et. al. 2002, Chapter 4)

Essa previsão também foi dada em apresentações populares da teoria: “Praticamente todas as mutações prejudicam a função da histona, de modo que quase nenhuma passa pelo filtro da seleção natural. Os 103 aminoácidos desta proteína são idênticos para quase todas as plantas e animais” (Molecular Clocks: Proteins That Evolve at Different Rates).

Mas esta previsão acabou sendo falsificada. Um estudo anterior sugeriu que uma das histonas poderia tolerar bem muitas mudanças. (Agarwal and Behe) E, posteriormente, estudos confirmaram e ampliaram esse achado: “Apesar da natureza extremamente bem conservada de resíduos de histonas ao longo de diferentes organismos, apenas algumas mutações nos resíduos individuais (incluindo os locais não modificáveis) provocam defeitos fenotípicos proeminentes” (Kim et. al.)
375px-Nucleosome_1KX5_colour_codedDa mesma forma um outro papel tem documentado estes resultados contraditórios: “É notável como muitos resíduos nestas proteínas altamente conservadas podem ser mutados e reterem a função básica do nucleossomo. … O elevado nível de conservação da sequência das histonas entre filos, sugere uma vantagem de aptidão destas sequências de aminoácidos particulares ao longo da evolução. Uma análise abrangente ainda indica que muitas mutações nas histonas não têm um fenótipo reconhecido. “(Dai et. al.) Na verdade, ainda mais surpreendente, muitas mutações, realmente elevaram o nível de condicionamento físico. (Dai et. al.)
(imagem do wikipédia – nucleossoma)

Referências
Agarwal, S., M. Behe. 1996. “Non-conservative mutations are well tolerated in the globular region of yeast histone H4.” J Molecular Biology 255:401-411.

Alberts, Bruce., D. Bray, J. Lewis, M. Raff, K. Roberts, J. Watson. 1994. Molecular Biology of the Cell. 3d ed. New York: Garland Publishing.

Alberts, Bruce., A. Johnson, J. Lewis, et. al. 2002. Molecular Biology of the Cell. 4th ed. New York: Garland Publishing. http://www.ncbi.nlm.nih.gov/books/NBK26834/

Dai, J., E. Hyland, D. Yuan, H. Huang, J. Bader, J. Boeke. 2008. “Probing nucleosome function: a highly versatile library of synthetic histone H3 and H4 mutants.” Cell 134:1066-1078.

Kim, J., J. Hsu, M. Smith, C. Allis. 2012. “Mutagenesis of pairwise combinations of histone amino-terminal tails reveals functional redundancy in budding yeast.” Proceedings of the National Academy of Sciences 109:5779-5784.

Lodish H., A. Berk, S. Zipursky, et. al. 2000. Molecular Cell Biology. 4th ed. New York: W. H. Freeman. http://www.ncbi.nlm.nih.gov/books/NBK21500/

“Molecular Clocks: Proteins That Evolve at Different Rates.” 2001. WGBH Educational Foundation and Clear Blue Sky Productions.

A linguagem codificada escrita em microtúbulos, o esqueleto da célula, e como isso ressalta surpreendentemente a origem inteligente da vida. – PARTE II

Continuação desse artigo.

… … A emergência evolutiva gradual de células eucarióticas não é factível para mais uma razão, descrita aqui.

 

424340189_847318749893607_207055552_95759429837271104

 

 

 

 

 

 

 

 

 

Quando incorporados em microtúbulos, tubulina acumula um número de modificações pós-traducionais, muitos dos quais são únicos para estas proteínas. Estas modificações incluem detyrosination, acetilação, polyglutamylation, polyglycylation, fosforilação, ubiquitinação, sumoilação, e palmitoilação. O heterodímero α- e β-tubulina sofre múltiplas modificações pós-traducionais (PTMs). As subunidades de tubulina são modificadas de maneira não uniforme distribuídas ao longo de microtúbulos. Análogo ao modelo do “código de histonas” na cromatina, são propostas diversas PTMs para formar um bioquímico “código tubulin” que pode ser “lido” por fatores que interagem com microtúbulos.
Este é um fato relevante e incrível, e levanta a questão de como o “código tubulin” ao lado de vários outros códigos na célula emergiu. A meu ver, mais uma vez, isso mostra que a inteligência foi necessária para criar essas estruturas biomoleculares surpreendentes; formação de informação codificada sempre demonstrou ser capaz apenas de ser produzida por mentes inteligentes. Além disso: Que utilidade teria o código tubulin , se nenhum objetivo específico foi concebido antecipadamente, ou seja, ele agir como emissor, e se não houver nenhum destino das informações, não há razão do código existir em primeiro lugar. Assim, ambos, o emissor e o receptor, devem existir primeiro como hardware, que é o de microtúbulos com as unidades de tubulina modificados pós-transcricionalmente em uma conformação codificada especificada e o receptor, que pode ser Cinesina ou proteínas do motor de miosina, que são direcionados para o destino correto para exercer trabalhos específicos, ou outras proteínas dirigidas para tarefas específicas.

 

 

F1.large

 

Tomados em conjunto, múltiplas e complexas PMTs ( post-modificação transcricional) de tubulinas fornecem uma miríade de possibilidades combinatórias para especificamente ‘etiquetar’ subpopulações de microtúbulos em células, destinando-os para funções precisas. Como esta tubulina ou código de microtúbulos permite que as células se dividem, migram, comunicam e diferenciam-se de uma maneira ordenada é uma pergunta interessante a se responder num futuro próximo. Percepções iniciais já revelaram os potenciais papéis de PMTs tubulina em uma série de patologias humanas, como o câncer, neurodegeneração e ciliopatias.
Não só tem que ser elucidado como a tubulina ou código de microtúbulos permite que as células façam todos esses trabalhos, mas também o que explica melhor o seu surgimento e codificação. A maioria destas enzimas são específicas para tubulina e modificações pós translacionais de microtúbulos. Estas enzimas só são usadas se existirem microtúbulos. Os microtúbulos, contudo, exigem estas enzimas para modificar suas estruturas. Portanto, pode-se concluir que eles são interdependentes e não poderiam surgir de forma independente por mecanismos evolutivos naturais.
Uma hipótese que emerge é que modificações de tubulina especificam um código que determina resultados biológicos através de alterações na estrutura de ordem superior de microtúbulos e / ou por recrutamento e interagindo com proteínas efetoras. Esta hipótese é análoga à hipótese do código de histonas – que modificações em histonas nucleares, agindo de forma combinatória ou sequencial, especificam múltiplas funções da cromatina, tais como mudanças na estrutura da cromatina de ordem superior ou ativação seletiva de transcrição. Os paralelos aparentes entre estes dois tipos de quadros estruturais, a cromatina no núcleo e microtúbulos no citoplasma, são intrigantes
Não é evidência impressionante de um designer comum que inventou ambos os códigos?

 

Os microtúbulos são tipicamente nucleados ( montados peça a peça mediante os “blocos de construção ” de microtúbulos chamados tubulins ) e organizados pela organela dedicada chamada centro de organização de microtúbulos (MTOCs). Contido dentro da MTOC, há um outro tipo de tubulina, chamada γ-tubulina, que é distinta das subunidades α- e β dos próprios microtúbulos. A γ-tubulina combina com várias outras proteínas associadas para formar uma estrutura semelhante a uma anilha de bloqueio do tipo conhecido como o complexo γ-tubulina anel “(γ-UTRA) Este complexo atua como um modelo para colocação e montagem de α/β dímeros de p-tubulina para começar a polimerização; atua como um tampão de o (-) final, enquanto o crescimento dos microtúbulos continua se distanciando da MTOC na direcção (+) . O núcleo essencial chamado complexo pequeno (γTuSC) γ-tubulina é a parte central conservada da máquina de nucleação de microtúbulos, e é encontrado em quase todos os eucariotas.

 

Continua … … … 

A origem das plantas depende da “pré-adaptação”, outra palavra para “Preparação”.

Por Ann Gauger – Evolution News

closterium strigosum

Um dos problemas mais difíceis para os biólogos evolucionistas está em explicar como é que adaptações gerem e aparecem na hora certa para que o próximo estágio evolutivo possa tomar o seu lugar. Este problema foi sucintamente resumido por Hugo de Vries, um botânico holandês. Parafraseando: Não é a sobrevivência do mais apto, é a chegada do mais apto que precisa de explicação.

Para contornar o problema, os biólogos evolucionistas atuais usam uma palavra especificamente para este problema: a pré-adaptação. Em outras palavras, as coisas ficam prontas para o que está por vir antes de sua chegada. Aqui está um exemplo que o Science Daily relata:

[A] equipe de cientistas de John Innes Centre, da Universidade de Wisconsin, Madison, e outros colaboradores internacionais, descobriram como uma alga antiga foi capaz de habitar a terra, antes dela passar a evoluir a primeira planta do mundo e colonizar a terra …

Dr. Delaux disse: “Em algum momento, 450 milhões de anos atrás, alguma alga das águas da Terra espirrou na terra estéril e de alguma forma ela sobreviveu e se enraizou; um momento decisivo que deu o pontapé inicial a evolução da vida na Terra. Nossa descoberta mostra pela primeira vez que a alga já sabia como sobreviver em terra, enquanto ela ainda estava na água. Sem o desenvolvimento desta capacidade de pré-adaptação na alga, a terra poderia ser um lugar muito diferente hoje.  [grifo nosso].

Imagine este cenário: Antes das plantas terem colonizado a terra há 450 milhões de anos atrás, a única coisa na terra seria um tipo antigo de fungo. Uma espécie antiga de algas, o precursor de plantas modernas, está a viver no mar. Por alguma razão desconhecida desenvolve caminhos que lhe permitem ter uma relação simbiótica com o fungo, sem os quais não poderia sobreviver em terra.

Como sabemos disso? Os genes para a via simbiótica existe nas versões modernas da antiga alga.

O Dr. Delaux e os colaboradores analisaram o DNA e RNA de algumas das primeiras plantas terrestres conhecidas e algas verdes e encontraram  evidências de que seu ancestral compartilhado de algas vivendo em águas da Terra já possuíam o conjunto dos genes, ou caminhos simbióticos, que são necessários para detectar e interagir com o benéfico fungo AM [micorrizas  arbusculares / arbuscular mycorrhiza (inglês)].

Com a via presente, quando chegasse a hora e a alga espirrada acima, para a costa, ela estava aparelhada para compartilhar recursos com as espécies de fungos que estavam lá. Talvez ela teve que ser espirrada muitas vezes antes de ter montado o caminho necessário. Todas as vezes, porém, ele teria morrido sem a relação simbiótica com o fungo. Apenas através da via simbiótica é que a alga poderia sobreviver em terra.

É difícil explicar como um caminho necessário para sobreviver poderia desenvolver-se aos poucos, quando não há nenhum benefício até que a coisa toda é montada. (Isso é um eufemismo). Talvez ela estava usando o caminho para outra coisa, alguns diriam, e isso só aconteceu para fornecer os meios para a simbiose. Nós só seriamos produzidos num mundo de sorte onde a via para a simbiose fosse montada.

Eu tenderia a descontar essa história pré-adaptacionista,  por ser tão improvável por motivos darwinianos, não fosse eu um proponente do design inteligente. Existem inúmeros outros exemplos paralelos a este, apesar de tudo. Nós encontramos genes pré-adaptados (em inglês) em animais que nunca desenvolveram os planos ou estruturas do corpo que requerem esses genes. O que eles estão fazendo lá?

Quando os organismos desenvolvem os genes e vias, seus descendentes vão usar em algum momento no futuro, antes de precisar deles para uma determinada coisa, isto é chamado de pré-adaptação, exaptação, ou cooptação. O que quer que você o chame, ou é um processo dirigido ou algo extremamente afortunado. A evidência de evolução dirigida, planejamento, ou qualquer tipo de previsão é hostil ao darwinismo, talvez por isso, não é surpreendente que o nome de pré-adaptação é atribuído, e ele é deixado para isso. Mas a previsão é exatamente do que esperamos de processos concebidos. Pré-adaptação é outra palavra para preparação – algo que todos nós devemos reconhecer como uma marca de design.

Créditos da imagem: alga verde, por Michael Melkonian via John Innes Centre.

[Texto adaptado] 

 

Obs: Este artigo possui links em inglês, além de outros links que você pode acessar na página do Evolution News.

A linguagem codificada escrita em microtúbulos, o esqueleto da célula, e como isso ressalta surpreendentemente a origem inteligente da vida. – PARTE I

Por Angelo Grasso

 

 

424340189_847318749893607_207055552_95759429837271104

 

 

 

 

 

 

 

 

O Designer da vida deixou uma riqueza de evidências de sua existência na criação. Vastas impressões que evidenciam o design inteligente em cada célula viva. É amplamente conhecido que o DNA é um dispositivo de armazenamento de informação complexa e especificada, que codifica a informação para produzir proteínas e dirigindo muitos processos altamente complexos na célula. O que é menos conhecido, é que existem vários outros sistemas de códigos, bem como, nomeadamente, o código de ligação de histonas, código de ligação do fator de transcrição, o código de splicing,o código de estrutura secundária de RNA, e o código ultracomplexo e ainda não decifrado glycans. E há um outro sistema de código surpreendente, o chamado código Tubulin, que está sendo desvendado aos poucos em recentes pesquisas científicas. Sabe-se até agora que, entre outras coisas, ele dirige e dá sinais para proteínas motoras cinesina e miosina precisamente onde e quando para desengatar a partir de auto-estradas nanomolares aonde entregar sua carga.

 

Pesquisas recentes estão descobrindo que este código de uma maneira mesmo incrível até armazena nossas memórias no cérebro e as torna disponíveis a longo prazo.

 

Para que as células funcionem adequadamente, elas devem organizar-se e interagir mecanicamente umas com as outras e com o seu ambiente. Elas têm que ser corretamente em forma, fisicamente robustas, e devidamente estruturadas internamente. Muitas têm que mudar a sua forma e se deslocar de um lugar para outro. Todas as células têm que ser capaz de reorganizar seus componentes internos à medida que crescem, se dividem, e adaptar-se às novas circunstâncias. Estas funções espaciais e mecânicas dependem de um sistema de filamentos notável chamado o citoesqueleto. Variadas funções do citoesqueleto dependem do comportamento de três famílias de filamentos: filamentos actina-proteína, microtúbulos e filamentos intermédios. Os microtúbulos são muito importantes para um número de processos celulares.

 

Eles estão envolvidos na manutenção da estrutura da célula e fornecem uma plataforma para montagens macromoleculares intracelulares através dos motores moleculares dineínas e cinesinas que marcham como gente. Eles também estão envolvidos na separação cromossoma (mitose e meiose), e são os principais constituintes de fusos mitóticos, os quais são utilizados para puxar para além dos cromossomas eucarióticos. A divisão celular mitótica é a tarefa mais fundamental de todas as células eucariótas vivas. As células têm máquinas intrincadas e bem regulamentadas para garantir que a mitose ocorra com uma frequência adequada e com alta fidelidade. Se alguém quiser explicar a origem das células eucarióticas, o surgir da mitose, seu mecanismo, organelas celulares envolvidas e proteínas devem ser explicadas. O centrossoma desempenha um papel central: ele funciona como o principal centro-organização dos microtúbulos e desempenha um papel vital em guiar a segregação dos cromossomos durante a mitose. No centrossoma, dois centrioles residem em ângulos retos entre si, ligados, por fibras, numa extremidade.

 

slide_47

 

Estas estruturas são perfeitas arquiteturas essenciais em muitas células de animais e plantas (embora não em plantas com flores ou fungos, ou em procariotas). Elas ajudam a organizar os centrossomas, cujos eixos de microtúbulos durante a divisão celular chegam aos cromossomos alinhados e trazê-los para as células filhas.

 

Heterodímeros α- e β-tubulina são as subunidades estruturais da estrutura microtúbulo. A estrutura é dividida no domínio do terminal amino contendo a região de ligação de nucleótidos, um domínio intermediário contendo o local de ligação do taxol, e o domínio carboxi-terminal, que provavelmente constitui a superfície de ligação para proteínas do motor. A menos que todos os três domínios funcionais estivessem totalmente funcionais e desenvolvidos desde o início, as tubulinas não teriam nenhuma função útil. Não haveria razão para o local de ligação Taxol estar sem proteínas de motor existentes. Instabilidade dinâmica, a mudança estocástica entre crescimento e contração, é essencial para a função de microtúbulos.

 

A dinâmica dos microtúbulos no interior das células é regulada por uma variedade de proteínas que ligam dímeros de tubulina ou os microtúbulos. Proteínas que se ligam aos microtúbulos são chamados coletivamente de proteínas associadas a microtúbulos, ou a família maps.The MAP inclui grandes proteínas como a MAP-1A, MAP-1B, 1C-MAP, MAP-2 e MAP-4 e componentes menores, como tau e MAP 2C.

 

fullsize-cromossomas-580

 

 

 

 

 

 

Isto é altamente relevante. Os microtúbulos dependem de proteínas associadas a microtúbulos para a função apropriada. Interdependência é uma característica da concepção inteligente, e uma forte evidência de que ambos, microtúbulos, e proteinas MAP’s tiveram que emergir juntos, ao mesmo tempo, uma vez que um depende do outro para a função apropriada. Mas mais do que isso. Os microtúbulos são essenciais para formar o citoesqueleto, o qual é essencial para a forma e estrutura da célula. Em poucas palavras, Sem proteínas MAP’s, não haveria nenhuma função adequada dos microtúbulos. Sem microtúbulos, nenhuma função adequada do citoesqueleto poderia existir. Sem citoesqueleto, nenhuma célula com funcionamento adequado existiria. A evidência é muito forte, que todos esses elementos tiveram que surgir juntos, de uma vez. Cinesina e Dynein pertencem a familia de proteínas MAP’s. Proteínas cinesina contribuem para a atividade de despolimerização de microtúbulos ao centrómero centrossoma e durante a mitose. Estas atividades têm sido mostradas como sendo essencial para a morfogénese do fuso e a segregação de cromossomas. A emergência evolutiva gradual de células eucarióticas não é factível por mais uma razão, descrita aqui.

 

Obs: A fonte do deste artigo possui os artigos originais e suas referências.

 

Continua… …. ….

 

 

 

 

Porque os darwinistas estão furiosos com o projeto ENCODE? Livnat explica.

Por Wallace Barbosa.

 

12046730_611679085639402_635619911366002711_n

 

Uma das maiores ambições do mundo científico é compreender o genoma humano (DNA) em sua totalidade, e um dos maiores passos nesse sentido foi o Projeto Genoma Humano, iniciado em 1988 [1]. Dada a complexidade do nosso DNA (e a tecnologia menos avançada da época), o primeiro esboço do genoma inteiro só veio a ser divulgado em 2000, levando mais 3 anos para a divulgação de sua forma definitiva [1].

Apesar de o genoma ter sido completamente mapeado, logo ficou claro que os cientistas não chegaram nem perto de atingir seu objetivo final. Dos mais de 3.2 bilhões de bases pareadas do nosso DNA, menos de 2% representa a região responsável por codificar proteínas (isto é, que possuem “instruções” sobre como “montá-las”) [2]. Ou seja, ~98% do DNA se mostrou um completo mistério e, graças ao pensamento darwinista, essa vasta região foi e ainda é rotulada como “junk DNA” (DNA lixo), mera “sucata” acumulada durante bilhões de anos de história e “experimentos” evolutivos.[3]

 

junk-dna-header-600x200

 

 

 

 

 

 

A fim de elucidar a função dessa região, surgiu o projeto internacional ENCODE (Enciclopédia de Elementos do DNA) em 2003, contando com a participação de 27 institutos [4]. Em 2012, a bomba: em um artigo assinado por todos os líderes do projeto, divulgou-se que ao menos 80.4% do genoma humano é ativo, funcional [5][6]! Eu uso o termo “bomba” porque essa notícia se tornou o estopim de uma verdadeira controvérsia acadêmica, justamente por ter instigado a ira de um certo grupo… Sim, é claro que estou me referindo aos biólogos evolutivos, que logo publicaram críticas exasperadas contra o projeto ENCODE (contra o percentual citado acima e contra a afirmação de que “todos os livros didáticos estão errados[6], feita por um dos líderes do ENCODE), a exemplo de Dan Graur [6] e W. F. Doolitler [7], entre outros.

Aparentemente, o embate é motivado pela definição de “função” usada pela equipe do ENCODE (para eles, funcionalidade é atribuída a segmentos no genoma que codificam um produto definido (e.g. proteína ou RNA não-codificante (ncRNA)) ou demonstram uma assinatura bioquímica (segmentos onde proteínas se ligam; encontrados em regiões de cromatina aberta; localizados em regiões contendo acentuassomos (enhancers); segmentos que contenham uma região CpG metilada ou que sejam associados a histonas [5, 6]). Para Graur e colegas darwinistas, “função” significa uma região “conservada” pela seleção “purificadora” que não pode ser sujeita a mutações deletérias [6], encontrada em duas ou mais espécies próximas [8].

Todavia, como podemos ler nas palavras de Adi Livnat citadas na imagem, a disputa contra os 80% é claramente causada por sua incompatibilidade com o paradigma darwinista tradicional que impera desde os anos 30 (data de origem da síntese moderna), que defende que mutações benéficas que se acumulariam ao ponto de gerarem alguma função (e.g. um gene que produza uma proteína responsável por um fenótipo) seriam conservadas pela seleção natural. Mas, para gerar um só gene operante, muitas tentativas falhas ocorreriam, gerando um monte de sucata acumulada.

Desse modo, o apego dos darwinistas ao tal paradigma supera até a sede e respeito pelo progresso científico… E não estou blefando, como podemos ver nas palavras de Doolitle:

‘Eu sugerirei que nós, como biólogos, defendamos a concepção tradicional de função: a publicidade ao redor do ENCODE revela a extensão do quanto essa concepção tem erodido’[7]

Já Graur atesta que o ENCODE não oferece razões suficientes para:

‘Abandonar a concepção prevalente entre os biólogos evolutivos segundo a qual muito do genoma humano é desprovido de função’
[6]

Segundo esse pensamento anticientífico, eles predizem que a maior parte do junk DNA nunca sequer irá adquirir função alguma [9]! Imaginem o que seria da ciência se toda a comunidade levasse essa suposição darwinista a sério… Simplesmente todas as pesquisas seriam abandonadas, afinal, de que adianta pesquisar sucata inútil? Mas, diferente deles, pesquisadores biomédicos têm celebrado o projeto ENCODE, reconhecendo seu benefício potencial para a medicina. Marco Galasso et al. descrevem bem a importância do estudo dos ncRNAs:

‘Nos últimos anos se tornou claro que os ncRNAs estão envolvidos em muitos processos fisiológicos e contribuem na alteração molecular em casos patológicos. Inúmeras classes de ncRNAs, como o siRNA, microRNA, piRNA, snRNA e regiões transcritas ultra-conservadas têm participação em casos de câncer, doenças cardíacas, desordens auto-imunes, metabólicas e neurodegenerativas. NcRNAs possuem papel fundamental na regulação genética […]’ [10]

Em harmonia com o que é defendido pelos proponentes do Design Inteligente, Bhatia e Kleinjan [11] relatam:

‘O CONTROLE PRECISO da expressão de PROGRAMAS genéticos é crucial para o estabelecimento de diversos padrões de atividades gênicas necessárias para o desenvolvimento, modelagem e diferenciação de milhares de tipos de células de um organismo. A importância crucial das regiões não-codificantes é um fato bem estabelecido e depende de diversos grupos de fragmentos chamados de elementos cis-regulatórios […] Maior entendimento sobre o controle da expressão dos genes é de suma importância para a saúde humana, visto que defeitos nessa regulação são uma sabida causa significante de enfermidades.’

(Ênfase minha)

Os diversos danos que a evolução vem causando à ciência são algumas das maiores razões pelas quais nos manifestamos contra essa equivocada “teoria”. Os erros induzidos pelo darwinismo no passado (como é o caso das fraudes de Haeckel e o homem de Piltdown, etc; conceitos nocivos (e.g. órgãos “vestigiais”, eugenia e darwinismo social) e equívocos científicos (junk DNA)) são até perdoáveis; agora é inadmissível que darwinistas prossigam prejudicando a ciência em prol da manutenção dessa síntese falha e arcaica, tudo isso por obstinação e intriga contra o movimento do design inteligente, como apontado por J. Mattick e Dinger [3]:

‘Finalmente, sugerimos que a resistência contra os resultados do ENCODE é motivada também, em certos casos, pelo uso do conceito dúbio do junk DNA como evidência contra o design inteligente’.

E o furor dos darwinistas contra o ENCODE continua, inclusive nas redes sociais [12], mas nada vai barrar a noção revelada pelos dados do projeto, e múltiplos estudos paralelos continuam revelando funções relevantes, dezenas de ncRNAs fundamentais para a estabilidade do genoma e sua regulação, o que tem levado defensores da evolução, incluindo o próprio Adi Livnat, a defenderem a reforma ou substituição da síntese moderna. E, como sempre, o avanço dessas pesquisas (e da ciência em geral) somente reforçará ainda mais a noção do DI em todos os aspectos da biologia.

 

 

Referências

[1] The Human Genome Project Completion: Frequently Asked Questions. <https://www.genome.gov/11006943>

[2] Cory McLean and Gill Bejerano. Dispensability of mammalian DNA. Genome Res. Oct 2, 2008; doi: 10.1101/gr.080184.108

[3] J S Mattick, M E Dinger. The extent of functionality in the human genome. The HUGO Journal 2013, 7:2 doi:10.1186/1877-6566-7-2

[4] The ENCODE Project Consortium (2011) A User’s Guide to the Encyclopedia of DNA Elements (ENCODE). PLoS Biol 9(4): e1001046. doi:10.1371/
journal.pbio.1001046

[5] The ENCODE Project Consortium (2012) An integrated encyclopedia of DNA
elements in the human genome. Nature. 2012 Sep 6;489(7414):57-74 doi:10.1038/nature11247

[6] Dan Graur, Yichen Zheng, Nicholas Price, Ricardo B.R. Azevedo, Rebecca A. Zufall, and Eran Elhaik (2013). On the Immortality of Television Sets: “Function” in the Human Genome According to the Evolution-Free Gospel of ENCODE. Genome Biol. Evol.5 (3):578–590. doi:10.1093/gbe/evt028

[7] W. Ford Doolittle (2012) Is junk DNA bunk? A critique of ENCODE. PNAS April 2, 2013 vol. 110 no. 14 5294-5300 doi: 10.1073/pnas.1221376110

[8] Manolis Kellis et al. Defining functional DNA elements in the human genome. PNAS April 29, 2014 vol. 111 no. 17 6131-6138 doi:10.1073/pnas.1318948111

[9] Garrido-Ramos (2015) Satellite DNA in Plants: More than Just Rubbish. Cytogenet Genome Res 2015;146:153-170 (DOI:10.1159/000437008)

[10] Marco Galasso, Maria Elena Sana and Stefano Volinia (2010) Non-coding RNAs: a key to future personalized molecular therapy? Genome Medicine 2010, 2:12 doi:10.1186/gm133

[11] Shipra Bhatia, Dirk A. Kleinjan. (2014) Disruption of long‑range gene regulation in human genetic disease: a kaleidoscope of general principles, diverse mechanisms and unique phenotypic consequences. Hum Genet DOI 10.1007/s00439-014-1424-6. Springer

[12] Chris Woolston. Furore over genome function. Nature 512, 9 (07 August 2014) doi:10.1038/512009e Published online 06 August 2014