Dois mecanismos revisam a tradução do DNA. Faça disso três.

Por Evolution News 

[ Obs: Titulo e texto adaptados a partir do original – O artigo possui links no original em inglês – Imagem do EnV com seus devidos créditos ]

obama_healthcare_speech_draft

A própria ideia de que as células revisam suas informações genéticas torna o design inteligente intuitivamente óbvio. Não se revisa jargão (linguagem sem nexo). Se as células tivessem pavimentado conjuntos aleatórios de blocos, não importaria realmente a ordem que em eles estivessem reunidos. Sabemos, é claro, que a sequência é importante: a maioria das mutações causam doença ou morte. Revisão é prova por excelência que a informação genética representa a informação real, do tipo encontrada nos livros e nos softwares. Defensores do DI não acham surpreendente, portanto, que as células vão muito longe para proteger suas informações genéticas.

O “controle de qualidade” celular tem sido reconhecido na literatura há algum tempo. De fato, o Prêmio Nobel de Química em 2015 foi para três cientistas que descobriram mecanismos de reparo do DNA. As células inspecionam e corrigem suas macromoléculas informacionais em todas as fases: na transcrição, na tradução e durante a modificação pós-tradução.

Existem máquinas moleculares em movimento inspecionando outras máquinas em trabalho na célula. Elas reconhecem as proteínas dobradas e as marcam para degradação. E quando a célula se divide, as máquinas moleculares verificam cada letra quando as cadeias do DNA são duplicadas. As células estão em atividade de “controle de qualidade”.

Revisão, no entanto, é um passo além da reparação. Uma célula pode reparar uma cadeia quebrada de DNA, sem levar em conta a sequência de “letras” nucleotídicas. A revisão real deve garantir a precisão da própria sequência. A célula verifica erros de digitação? Absolutamente.

Um artigo na Proceedings of the National Academy of Sciences compartilhou novas evidências que suportam a questão do design. Pesquisadores da Universidade de Uppsala, na Suécia, encontraram não apenas uma, mas duas etapas de revisão independente no ribossomo além da que já era conhecida.

Elas ocorrem onde transcritos de RNA mensageiro são traduzidos em proteínas. O título diz que: “Duas etapas de revisão amplificam a precisão da tradução de códigos genéticos”. Aqui está a declaração sobre o significado da descoberta:

Descobrimos que dois passos de revisão amplificam a precisão da leitura do código genético, não um passo, como até agora se acreditava. Nós caracterizamos a base molecular de cada um destes passos, pavimentando o caminho para a análise estrutural em conjunto com a estrutura baseada em cálculos de energia livre padrão. Nosso trabalho destaca o papel essencial do fator de alongamento Tu para a tradução precisa do código genético, tanto na seleção inicial quanto na revisão. Nossos resultados têm implicações para a evolução da leitura eficiente e precisa do código genético através da revisão em vários passos, o que atenua os efeitos, doutra forma prejudiciais, ocorrido na compensação obrigatória entre eficiência e precisão na seleção do substrato feito por enzimas. [Enfase adicionada.]

Se você se lembra da animação dos passos de tradução em Unlocking the Mystery of Life (Desbloqueando o Mistério da Vida), lembre-se que os transcritos do RNA mensageiro (mRNA) são lidos em conjuntos de três letras (codons). Correspondendo aos codões de mRNA, estão as moléculas de RNA de transferência (tRNA), cada uma equipada com um “anticodon” correspondente numa extremidade e um aminoácido na outra extremidade (quando carregadas, são chamadas aminoacil-tRNAs ou aa-tRNAs). Como os codões e anticódons se emparelham em arquivo único dentro do ribossomo, os aminoácidos se fixam em arquivo único com ligações peptídicas.  A crescente cadeia polipeptídica irá se tornar uma proteína após a tradução ser completada.  Adicionalmente, as “chaperonas” moleculares asseguram que as cadeias polipeptídicas resultantes sejam dobradas corretamente em máquinas moleculares funcionais.

A equipe de Uppsala examinou o ribossomo para dar uma olhada no passo onde o tRNA encontra o mRNA. Eles sabiam que a seleção do tRNA correto era um primeiro passo crucial, inicialmente previsto por Linus Pauling sete décadas atrás. Quando a precisão medida na tradução mostrou-se realmente maior do que Pauling predisse, os biólogos moleculares suspeitaram que algum tipo de mecanismo de correção de erro deveria estar funcionando. Um mecanismo de revisão foi posteriormente encontrado no ribossomo. Mas como isso funciona? Podemos nos relacionar com revisores humanos, mas como as moléculas sem olhos são corrigidas no escuro dentro de um ribossomo?

A amplificação de precisão por revisão exige que o descarte de substrato seja conduzido por uma diminuição do potencial químico desde a entrada de um substrato até sua saída ao longo do caminho de revisão. Uma maneira de programar tal queda no potencial químico é acoplar o descarte de substratos por revisão a hidrólise de GTP ou ATP com alto potencial químico com o baixo potencial químico de seus produtos hidrolíticos.

Resumindo, a revisão precisa ser eficiente em termos de energia, mas não acontecerá sem o gasto de uma molécula rica em energia para empurrá-la. A reação deve favorecer a obtenção da molécula certa onde ela pertence.

Os bioquímicos sabiam que cada aa-tRNA teria de ser preparada para o seu papel através da ligação a um assistente chamada Fator  Elongation Tu (EF-Tu), mais uma molécula de combustível, GTP. Mas, depois desse passo, os autores encontraram outros dois:

Descobrimos que o ribossomo bacteriano utiliza dois passos de revisão seguindo a seleção inicial de RNAs de transferência (tRNAs) para manter uma elevada precisão da tradução do código genético. Isto significa que existem três passos de seleção para o reconhecimento de codões feito por aa-tRNAs. Em primeiro lugar, existe uma seleção inicial de codões por aa-tRNA no complexo ternário com o fator de alongamento Tu (EF-Tu) e GTP. Em segundo lugar, há revisão do aa-tRNA no complexo ternário com EF-Tu e PIB. Terceiro, há revisão de aa-tRNA na forma EF-Tu-independente, presumivelmente após a dissociação de EF-Tu · GDP do ribossomo (Figura 1).

Isto amplifica significativamente a precisão da tradução. “Embora já tenha sido reconhecido que a revisão em vários passos confere maior precisão e eficiência cinética em substrato-seletivo, via reações catalisadas por enzimas do que passo único de revisão”, dizem eles, “tem sido tomado como certo que existe apenas um único passo de revisão na seleção de tRNA no ribossomo tradutor”.

As novas descobertas lançam nova luz sobre os passos moleculares reais, necessários para a correção de alta precisão. E, embora seu trabalho tenha sido feito em bactérias, “sugerimos que os mecanismos de revisão em dois estágios funcionem não apenas em bactérias, mas também em eucariotos e, talvez, em todos os três reinos da vida”.

Como um evolucionista explica isso? No início do artigo, eles dizem: “Sugerimos que a revisão em vários passos na tradução de códigos genéticos tenha evoluído para neutralizar possíveis pontos potenciais de erro, na seleção inicial do (s) aa-tRNA(s) propenso(s) a erro(s) no complexo ternário com EF-Tu e GTP”.

Mas isso não pode ser verdade. É uma declaração teleológica. A seleção natural não pode “evoluir para” fazer nada. Logo depois no artigo, eles se concentram mais na questão, apresentando o enredo como um conto de fadas evolutivo: “Por que a Mãe Natureza evoluiu duas etapas de revisão na tradução de códigos genéticos?”.

A existência de dois passos distintos de revisão pode parecer surpreendente, porque a precisão da seleção inicial do codão pelo complexo ternário é normalmente notavelmente alta. Por conseguinte, sugerimos que a revisão em dois passos evoluiu para neutralizar os efeitos deletérios de um pequeno número de pontos de erro distintos para a seleção inicial do codão observada in vitro e in vivo.

Isso deve causar ainda mais tristeza para o neodarwinismo, porque mostra que a revisão de um único passo “normalmente é notavelmente alta”.  Em essência, a célula verifica a sua tradução, já precisa. Eles realmente usam a palavra “revendo” para descrever isso. Eles estimam que a revisão forneça um aumento de milhões de vezes em precisão, muito acima da modesta amplificação de revisão na gama dos trezentos, observada aqui.

Além da descoberta inesperada de duas etapas de revisão, o presente estudo identificou a base estrutural do primeiro passo EF-Tu-dependente e sugeriu características mecanicistas de ambas as etapas de revisão. Esses achados facilitarão a análise estrutural das etapas de revisão, junto com cálculos baseados na estrutura de suas energias livres padronizadas que codificam codões, para uma compreensão mais profunda da evolução da leitura precisa do código genético.

Outros Exemplos de Sistemas Redundantes na Célula.

Este não é o único caso de sistemas múltiplos e independentes na célula. Três pesquisadores em Massachusetts, também publicando na Proceedings of the National Academy of Sciences , descobriram mecanismos redundantes para reparar rupturas de cadeia dupla no DNA.  As duas vias, NHEJ e MMEJ, podem funcionar como sistemas primários e de backup. “É possível que haja redundância parcial entre as vias NHEJ e MMEJ, com MMEJ servindo como um backup e NHEJ sendo o principal mecanismo.” O caminho do backup contribui para a reparação de algumas rupturas duplas, mas não todas. Posts anteriores aqui no Evolution News apontaram redundância em sistemas biológicos, como este, afirmando que os “caminhos são organizados em uma rede entrelaçada, muitas vezes redundante, com arquitetura que está intimamente relacionada com a robustez do processamento de informação celular”. Outro artigo apontou que os cromossomos parecem ter um sítio de backup para centrômeros.

O que aprendemos nesses artigos combina bem com o que David Snoke disse em um podcast do ID the Future sobre a Biologia de Sistemas como a maneira do engenheiro de olhar a vida (para mais, veja isto de Casey Luskin). Engenheiros entendem conceitos como backups, redundância, dupla verificação e controle de qualidade. Eles percebem que há tradeoffs entre precisão e velocidade, assim, eles buscam aperfeiçoar os requisitos de projetos concorrentes.

Em vez da visão de baixo para cima do reducionista, o biólogo de sistemas toma a visão de cima para baixo: como todos os componentes funcionam juntos como um sistema? Na prática, diz ele, os biólogos de sistemas procuram entender os seres vivos como exemplos de sistemas otimizados, e também a “engenharia reversa” deles de maneiras inovadoras. Em ambos os contextos, o design inteligente – não a evolução darwiniana – é o conceito operacional que conduz a ciência.

“Prático como Batatas” – Eric Metaxas em Behe, ID e Revolutionary.

By Evolution News – David Klinghoffer

[Obs: Esse artigo é uma adaptação – Possui links no original em inglês]

07

Eric Metaxas é uma raridade, comentando sobre uma impressionante gama de assuntos, todos com inteligência, sagacidade e senso comum incomum. Em uma transmissão de BreakPoint hoje, ele reflete sobre o vigésimo aniversário da Caixa Preta de Darwin do bioquímico Michael Behe  e destaca o nosso novo documentário Revolutionary: Michael Behe e o mistério das máquinas moleculares, escrito e dirigido por John West.

Metaxas oferece um novo encomium (elogio) para os argumentos científicos para o projeto (design) na natureza. O caso de Behe para ID é “prático como batatas“.

À medida que os cientistas ganham acesso cada vez mais detalhado ao funcionamento interno das células, o caso contra o darwinismo a partir da complexidade irredutível só se torna mais forte. E o movimento do design inteligente – uma comunidade que considera Behe um pai fundador – continua a questionar a viabilidade da evolução materialista com base em seu raciocínio.

Para tornar os argumentos meticulosos de Behe mais acessíveis ao público, os membros do Discovery Institute acabaram de produzir um documentário resumindo a “Caixa Preta de Darwin“. É chamado de “Revolutionary”, uma homenagem ao fato de que o livro de Behe mudou para sempre a maneira como pensamos sobre a evolução. Ele também documenta como, como David Klinghoffer escreve na Evolution News and Views, “Black Box” provocou um debate público que enfurece até hoje.

Por que é tão importante entender isso? Bem, como Ben Stein documentou em seu filme de 2008, “Expelled”, não é um raciocínio científico que está mantendo o design inteligente marginalizado.

Em vez disso, é uma campanha de desinformação e intimidação por parte do establishment darwinista, muitos dos quais estão interessados em criticar a pintura como “criacionistas”, cuja teoria é “a religião mascarada como ciência”.

Mas “design”, insiste Behe, “não é qualquer conclusão mística”. É um argumento científico fundamentado que é prático como batatas.

Sim, seria difícil ser mais prático do que isso. Não é interessante, entretanto, que enquanto “o caso da complexidade irredutível contra o darwinismo só se torna mais forte“, à medida que a ciência avança mais dentro da caixa preta da célula, a resistência e a negação do significado dela persistem teimosamente.

Há a evidência objetiva de propósito no funcionamento de máquinas moleculares e outras maravilhas da vida. Ou seja, por Eric Metaxas, as batatas. Mas então, vamos ser francos, há o investimento emocional que os negadores do projeto têm em sua resistência a essa evidência.

As razões para este investimento são complicadas e profundas. Eles são motivo de compaixão.

Eu sou menos simpático aos esforços de adultos deliberadamente manipularem as crianças a negarem suas intuições de design natural. Francamente, esses esforços são desprezíveis.

É um caso fascinante de trabalho de psicologia de massa, no caso, e mais uma prova de que muitas pessoas muito inteligentes pensam muito mais com o coração do que com a cabeça.

O código genético, recentemente descoberto, controla a sobrevivência bacteriana durante infecções.

32-newlydiscove

Por Phys.Org

[Obs: Texto adaptado – Esse artigo possui links, os links estão no original em inglês – Imagem do Phys.Org]

O código genético que permite às células armazenarem as informações necessárias para a vida é bem conhecido. Quatro nucleotídeos, abreviados A, C, G e T, soletram as sequências de DNA que codificam todas as proteínas que as células precisam.

Pesquisadores do MIT descobriram agora outra camada de controle que ajuda as células a desviarem rapidamente recursos em situações de emergência. Muitas bactérias, incluindo estirpes que causam tuberculose, usam esta estratégia para entrar em um estado semelhante à dormência, que lhes permitem sobreviverem em ambientes hostis quando privadas de oxigênio ou nutrientes. Para a tuberculose, as infecções pulmonares podem durar anos, antes de eventualmente “re-despertar” e causarem a doença novamente.

O que este estudo faz é revelar um sistema que as bactérias usam para fecharem-se e entrarem em um desses estados persistentes quando se estressam “, diz Peter Dedon, professor de Engenharia Biológica no MIT.

Dedon e seus colegas estudaram um tipo de bactéria conhecida como Mycobacterium bovis, uma das várias cepas bacterianas que podem causar tuberculose em seres humanos. Esta estirpe causa uma versão mais suave da doença do que a mais letal Mycobacterium tuberculosis e é utilizada em alguns países para a vacinação contra a tuberculose.

Segmentar esse sistema de controle genético recém-identificado poderia ajudar cientistas a desenvolverem novos antibióticos contra a tuberculose e outras doenças, diz Dedon, autor sênior de um artigo descrevendo as descobertas na edição de 11 de novembro da Nature CommunicationsYok Hian Chionh, um postdoc na Singapore-MIT Alliance para Pesquisa e Tecnologia (SMART), é o principal autor do artigo.

RESPOSTA RAPIDA

Dedon e colaboradores já demonstraram que tensões como a radiação ou produtos químicos tóxicos provocam células de levedura a ativarem um sistema que faz modificações químicas para transferir RNA (tRNA), que desvia as máquinas de construção de proteína da células de atividades de rotina para a ação de emergência.

No novo estudo, os pesquisadores investigaram como esse interruptor influencia as interações entre o tRNA e o RNA mensageiro (mRNA), que carrega instruções para a construção de proteínas do núcleo para estruturas celulares chamadas ribossomos. O código genético no mRNA é “lido” no ribossomo como uma série de sequências de três letras conhecidas como códons, cada uma das quais requerem um aminoácido específico (os blocos de construção das proteínas).

Esses aminoácidos são administrados ao ribossomo pelo tRNA. Como outros tipos de RNA, o tRNA consiste em uma sequência de quatro ribonucleósidos principais – A, G, C e U. (U em RNA substitui o T encontrado no DNA.) Cada molécula de tRNA tem um anticódon que corresponde a um codão de mRNA, assegurando que o aminoácido correto seja inserido na sequência da proteína. No entanto, muitos aminoácidos podem ser codificados por mais de um codão. Por exemplo, o aminoácido treonina pode ser codificado por ACU, ACC, ACA ou ACG. No total, o código genético tem 61 codões que correspondem a apenas 20 aminoácidos.

Uma vez que uma molécula de tRNA é fabricada, é alterada com dezenas de diferentes modificações químicas. Acredita-se que estas modificações influenciem a forma como o tRNA anticódon  liga-se fortemente ao codão de mRNA no ribossoma.

Neste estudo, Dedon e seus colegas descobriram que certas modificações de tRNA se elevaram  dramaticamente quando as bactérias foram privadas de oxigênio e pararam de crescer.

Uma dessas modificações foi encontrada no anticódon ACG–  treonina, de modo que os pesquisadores analisaram todo o genoma de Mycobacterium bovis em busca de genes que contêm altas percentagens desse codão ACG em comparação com os outros códons treonina. Eles descobriram que os genes com níveis elevados de ACG incluíam uma família conhecida como regulador DosR, que consiste em 48 genes que são necessários para que as células deixem de crescer e sobreviver em estado semelhante à dormência.

Quando falta oxigênio, estas células bacterianas começam a produzir grandes quantidades de proteínas reguladoras DosR, enquanto que a produção de proteínas a partir de genes contendo um dos outros codões para treonina, cai. As proteínas reguladoras DosR guiam a célula para um estado semelhante à dormência, desligando o metabolismo celular e interrompendo a divisão celular.

Os autores apresentam um exemplo impressionante da nova e emergente biologia profunda dos RNAs de transferência, que traduzem o código genético em todos os organismos vivos para criar proteínas“, diz Paul Schimmel, professor de biologia celular e molecular no Scripps Research Institute, que não estava envolvido na pesquisa. “Esta função há muito conhecida, foi vista de forma simples e direta por décadas e apresenta uma análise poderosa e abrangente para mostrar que há camadas e camadas, cada vez mais profundas, a essa função de tradução.

“CÓDIGO GENÉTICO ALTERNATIVO”

Os pesquisadores também mostraram que quando trocaram diferentes codões treonina para os locais genômicos onde ACG é geralmente encontrado, as células bacterianas não conseguiram entrar em um estado latente quando os níveis de oxigênio foram diminuídos. Porque fazer este interruptor de modificação de tRNA é fundamental para a capacidade das células bacterianas responderem ao estresse, as enzimas responsáveis por este interruptor poderiam produzir bons alvos para novos antibióticos , diz Dedon.

Dedon suspeita que outras famílias de genes, tais como aquelas necessárias para responderem à inanição ou para desenvolverem resistência aos fármacos, possam ser reguladas de forma semelhante por outras modificações de tRNA.

É realmente um código genético alternativo, no qual qualquer família de genes que é necessária para alterar um fenótipo celular é enriquecida com codões específicos” que correspondem a tRNAs modificados específicos, diz ele.

Os pesquisadores também têm visto este fenômeno em outras espécies, incluindo o parasita que causa a malária, e agora estão estudando em humanos.

 


 

Journal reference: Nature Communications 

Providenciado por: Massachusetts Institute of Technology

Beija-flores fazem o voar para trás parecer fácil.

By Science Daily 

[Artigo adaptado a partir do original]

Animais que se movem para trás geralmente requerem muita energia, então um biólogo ficou surpreso quando percebeu que beija-flores executam esta manobra rotineiramente. Questionando como beija-flores realizam a façanha, ele analisou seu voo e a quantidade de oxigênio que consomem e descobriu que a inversão é muito mais barata do que o voo pairando e não mais caro do que voar para frente.

Dar marcha à ré geralmente não é fácil, mas quando Nir Sapir observou beija- flores ágeis que visitam um alimentador em seu balcão em Berkeley, Califórnia, ele foi atingido pela sua capacidade de reverter a marcha. “Eu vi muitas vezes eles voarem para trás“, lembra Sapir, acrescentando o fato deles sempre reverterem a marcha para fora de uma flor após o deleite. No entanto, quando ele procurou na literatura, ficou desapontado ao descobrir que praticamente não houve quaisquer estudos sobre este comportamento particular.

wight_newhumm5_0u7a9939

Isto foi um pouco surpreendente, dado que eles estão fazendo isso o tempo todo“, Sapir diz, explicando que os pequenos aviadores visitam flores para alimentar uma vez a cada dois minutos. “Eu pensei que isto seria um tema interessante para saber como eles estão fazendo isso e quais são as consequências para o seu metabolismo“, diz Sapir, então ele e seu orientador de pós-doc, Robert Dudley, começaram a medir os movimentos de voo e o metabolismo de beija-flores que invertem a marcha para trás e publicaram a descoberta de que a reversão é muito mais barata do que pairar no ar e não mais cara do que o voo para frente no The Journal of Experimental Biology.

Capturando cinco beija-flores em um alimentador localizado dentro de uma janela do laboratório da Universidade da Califórnia, Berkeley, Sapir treinou os pássaros a voar em um túnel de vento após engana-los  para a alimentação em uma seringa de sacarose disfarçada como uma flor. Ele, então, filmou cada ave que pairava para se alimentar antes de voltar para o poleiro  satisfeita. Sabendo que o pássaro iria retornar ao alimentador novamente em breve, Sapir ligou o fluxo de ar quando o beija-flor chegou, e controlou o fluido em 3 m s para que a ave tivesse que voar para trás contra o vento e ficar parada na “flor”. Em seguida, ele repetiu o experimento com o alimentador de seringa camuflado, com rotação de 180 graus, enquanto o beija-flor voou para frente contra o vento para permanecer no mesmo lugar.

Analisando os três estilos de voo, Sapir recorda que havia diferenças claras entre o voo para frente e para trás.

A postura corporal dos beija-flores tornaram-se mais ereta enquanto voavam para trás, forçando-os a dobrar mais suas cabeças para inserirem seus bicos na flor artificial.  Além disso, as aves ao usarem a marcha à ré reduziam a inclinação do plano de bater asas, de modo que elas (asas) ficavam em posição mais horizontal. E quando Sapir analisou a frequência das batidas de asas, ele descobriu que as aves estavam batendo suas asas em 43,8 Hz, ao invés dos 39,7 Hz que elas usam durante o voo para frente. “Isso é muito para beija-flores, porque eles quase não mudam a frequência no bater das asas” , explica Sapir.

Repetindo os experimentos durante a gravação de taxas de consumo de oxigênio das aves, Sapir diz, “esperávamos encontrar valores elevados ou intermediários para o metabolismo durante o voo para trás, porque as aves tem uma posição vertical do corpo e isto significa que elas têm um maior arrasto. Além disso, as aves utilizam voo para trás com frequência, mas não o tempo todo, por isso, assume-se que não seria mais eficiente em termos de mecânica de voo em comparação com o voo para frente.” No entanto, Sapir ficou surpreso ao descobrir que, em vez de ser mais caro, o voo para trás era tão barato quanto o voo para frente e 20% mais eficiente do que o pairar. E quando Sapir gentilmente aumentou o fluxo de vento de 0 m s para passos de  1,5 m s em  1,5 m s para um único pássaro, ele descobriu que o voo era mais barato em velocidades de 3 m s e acima dos 3 m s, embora o pássaro fosse incapaz de voar mais rapidamente para trás acima dos 4,5 m s.

Descrevendo beija-flores como insetos capturados no corpo de um pássaro, Sapir acrescenta que o voo vibrante dos beija-flores tem mais em comum com os insetos do que com os seus primos de penas e ele está ansioso para descobrir se outros animais que pairam, como pequenos pássaros e morcegos que se alimentam de néctar, também podem inverter o voo.


 

Journal Reference:

  1. Nir Sapir and Robert Dudley. Backward flight in hummingbirds employs unique kinematic adjustments and entails low metabolic cost. Journal of Experimental Biology, 2012 DOI: 10.1242/200Bjeb.073114

Como o corpo lida com a gravidade?

By Evolution News – Howard Glicksman

[Obs: Esse texto é uma adaptação feita a partir do original – As imagens são do original com os devidos créditos]

 

piers_sellers_spacewalk

Nossos músculos, sob o controle de nossos nervos, nos permitem respirar, engolir, movimentar-se e lidar com as coisas. Os nervos periféricos enviam informações sensoriais sobre o que está acontecendo dentro e fora do corpo para a medula espinhal e o cérebro e a partir deles enviam de volta instruções motoras para os músculos, para lhes dizerem o que fazer. Em um artigo anterior desta série, descrevi alguns dos sensores que, como transdutores, convertem fenômenos em informações que o corpo pode usar. A pressão é detectada por sensores na pele; o movimento do corpo, especialmente da cabeça, é detectado pelo aparelho vestibular dentro do ouvido interno; e os próprios receptores fornecem informações sobre o estado dos músculos, tendões e articulações.

the-designed-body4Meu último artigo descreveu alguns dos reflexos (respostas motoras involuntárias, automáticas, pré-programadas, sem direção consciente do cérebro) que o corpo usa para evitar ferimentos graves e manter a sua posição. Agora vamos olhar para a forma como o corpo lida com a lei da gravidade e o que é preciso para manter o seu equilíbrio. Lembre-se de que quando os biólogos evolucionistas nos dizem sobre a vida e o mecanismo pelo qual ela deve ter surgido, eles lidam apenas com sua aparência e não como ela deve realmente trabalhar dentro das leis da natureza. Pergunte a si mesmo qual é a explicação mais plausível para como a vida surgiu: acaso e as leis da natureza por si só, ou design inteligente?

O centro de gravidade de um objeto é um ponto teórico sobre o qual o seu peso é distribuído uniformemente. Para um objeto que tem uma densidade uniforme com uma forma regular e simétrica, tal como um pedaço quadrado de madeira maciça, o centro de gravidade está no seu centro geométrico. Coloque um bloco quadrado de madeira sobre uma mesa e empurre-o mais e mais para fora da borda. Ele vai cair no chão quando seu centro de gravidade não estiver mais sobre a mesa.

O corpo humano é feito de músculos, órgãos, gordura e osso, cada um com uma densidade diferente. Embora o contorno físico do corpo seja simétrico de um lado para o outro, a sua forma é muito irregular. O centro de gravidade para a maioria das pessoas, enquanto em pé ou deitada, com os braços ao lado do corpo está na linha média, perto de seu umbigo. Para se manter em pé, o centro de gravidade do corpo deve permanecer entre os seus dois pés, tanto de um lado para o outro e de trás para frente, caso contrário, ele cai. O movimento dos braços ou pernas se distanciando a partir do corpo ou no dobrar da coluna em qualquer direção muda o centro de gravidade do corpo. Transportar um objeto, especialmente, a uma distância a partir do corpo, também irá alterar o seu centro de gravidade. Para os nossos primeiros ancestrais sobreviverem dentro das leis da natureza, eles não só tinham que ficar equilibrados em pé, mas também a pé, somente com um pé, e correndo; com nenhum dos pés em contato com o solo. Em outras palavras, o corpo humano é um objeto inerentemente instável, que precisa de controle para o equilíbrio.

O sistema neuromuscular mantém o corpo em posição, equilibrando-se em relação à gravidade. Embora a medula espinhal forneça reflexos que ajudam a manter a sua postura, é em grande parte no cérebro (particularmente o tronco cerebral e cerebelo) que se fornecem os padrões motores coordenados, necessários para manter o equilíbrio. Para fazer ajustamentos em continuo, o cérebro recebe dados sensoriais de basicamente quatro fontes diferentes: os receptores de pressão no pé, os proprioceptores (particularmente do pescoço e o restante da coluna vertebral), o aparelho vestibular dentro do ouvido interno, e visão.

Os sensores de pressão dos pés informam o cérebro sobre a distribuição do peso do corpo em relação ao seu centro de gravidade. Levante-se e incline-se de lado a lado, para frente e para trás. Observe a diferença nas sensações de pressão sentidas em cada pé com esses movimentos, a sensação de desequilíbrio, e os ajustes imediatos que devem ser feitos para ficar de pé.

Os proprioceptores do pescoço e o restante da coluna vertebral fornecem ao cérebro informações sobre a posição relativa da cabeça e o resto do corpo. Dobre o pescoço para frente e para trás e, em seguida, dobre a partir de sua cintura em qualquer direção. Onde quer que seu pescoço e coluna vertebral irem, assim vai a sua cabeça e o resto do seu corpo. Observe a sensação de desequilíbrio, como o seu centro de gravidade se move, estando longe dos seus pés e como você rapidamente tem que se ajustar para evitar a queda.

O aparelho vestibular contribui na informação sensorial sobre a velocidade e direção da cabeça e pescoço, movimento linear e angular e o movimento vertical do corpo. Além disso, ele ajuda a estabilizar a imagem da retina. Olhe em um espelho, com foco em seus olhos, e mova a cabeça lentamente para cima e para baixo, de lado a lado. Observe que os olhos se movem automaticamente na direção oposta, permitindo que eles permaneçam em foco. Você está vendo os efeitos do reflexo vestíbulo-ocular.

Agora, continue a focar os olhos e mover a cabeça para cima e para baixo, de lado a lado o mais rápido que você puder. Você não pode controlar conscientemente seus olhos rápido o suficiente para compensar estes movimentos. Isso ocorre automaticamente por causa de sua decisão de se concentrar em seus olhos (ou qualquer outro objeto), enquanto sua cabeça e seu corpo estão em movimento. Observe também como você se sentiu um pouco tonto e sem equilíbrio. Isto é causado pelos fortes impulsos nervosos alternados, sendo enviados a partir do aparelho vestibular em cada lado da cabeça para o cérebro, devido à velocidade dos movimentos da cabeça.

Os olhos fornecem ao cérebro uma imagem do ambiente no qual o corpo está localizado. A experiência clínica ensina que com a concentração, treinamento e movimento lento, a visão muitas vezes pode ajudar a manter o equilíbrio do corpo, sem informações dos sensores de pressão, dos proprioceptores, e do aparelho vestibular. Feche os olhos e comece a andar, aumentando progressivamente a sua velocidade. Observe como é difícil manter o seu equilíbrio. Fechar os olhos faz  de você totalmente dependente dos sensores de pressão nos pés, proprioceptores da coluna vertebral e membros, aparelho vestibular, o deixando um pouco fora de equilíbrio. Agora faça este exercício novamente, mas desta vez com os olhos abertos. É evidente que pistas visuais contribuem muito para sua capacidade de manter equilíbrio.

Uma das primeiras indicações de que uma pessoa pode ter um problema com o seu equilíbrio é quando ela inadvertidamente cai no chuveiro. Ao tomar uma ducha, a maioria das pessoas fecham os olhos por causa do uso shampoo no cabelo e, em seguida, voltam rapidamente sua cabeça e pescoço, e muitas vezes todo o seu corpo, para removê-lo. Movendo-se desta forma com os olhos fechados, significa que seu cérebro já não pode usar pistas visuais para manter o equilíbrio. Se uma pessoa tem condição como uma neuropatia sensorial (comum em diabéticos), que limita a recepção dos dados sensoriais dos pés, ou a esclerose múltipla, que retarda a velocidade do impulso nervoso no tronco cerebral, ou degeneração do cerebelo, fazendo com que as coordenações sejam pobres, então eles irão perceber o quão importante é a visão. Sem ela, torna-se difícil ou impossível para eles manterem o equilíbrio.

Toda a experiência clínica ensina que para nossos ancestrais mais antigos (e os organismos intermediários teóricos que conduziram a eles) manterem o seu equilíbrio, teriam necessidade de ter um sistema irredutivelmente complexo, com uma capacidade natural de sobrevivência similar ao nosso. Isso teria que incluir diferentes sensores localizados em lugares estratégicos para fornecer informações sobre a posição do corpo no espaço e no relacionamento com gravidade, um sistema nervoso central para receber e analisar, e a capacidade de acessar reflexos motores automáticos e enviar mensagens motoras voluntárias, rápido o suficiente para prevenir uma queda. Pelo que a força da gravidade não espera por ninguém e é um nivelador de igualdade de oportunidades, de sorte após sorte.

Só porque organismos semelhantes têm mecanismos semelhantes para manter o seu equilíbrio; isso, por si só, não explica de onde esses mecanismos e a sua capacidade de reagir adequadamente e rapidamente, veio, em primeiro lugar. Biologia evolutiva, como eu disse, é muito boa em descrever como a vida parece, mas não tem capacidade para explicar como ela deve trabalhar dentro das leis da natureza para sobreviver. Em meu próximo artigo veremos como somos capazes de realizar movimentos intencionais e realizar atividades dirigidas a objetivos. Como tudo o mais nesta série tem mostrado, não é tão simples como biólogos evolucionistas nos querem fazer crer.

O padrão Pentadáctilo e a descendência comum – As primeiras previsões da evolução.

By Cornelius Hunter – Darwins Predictions

[Texto adaptado a partir do original]

A pentadáctila – estrutura de cinco dígitos (quatro dedos e um polegar para os seres humanos) no final da estrutura do membro (locomotor) é um dos textos de prova mais célebres para a evolução.  A estrutura pentadáctila é encontrada em todos os tetrápodes e seus usos incluem o voo, o segurar/agarrar, o escalar e o rastejar. Tais atividades diversas, na lógica evolucionista, devem exigir diversos membros. Não parece haver nenhuma razão para que todos devam precisar de um membro de cinco dígitos apenas. Por que não três dígitos para alguns, oito para outros, treze para alguns outros, e assim por diante? E, no entanto todos eles são dotados de cinco dígitos. Como explicado por Darwin, “O que pode ser mais curioso que a mão de um homem, formada para agarrar, de uma toupeira para cavar, a perna do cavalo, a nadadeira da toninha (boto), e a asa do morcego? Tudo deve ser construído no mesmo padrão, e deve incluir ossos similares, nas mesmas posições relativas. (Darwin, 382)

Tal design abaixo do ideal deve ser um artefato de uma descida de design (comum) abaixo do ideal, que foi proferido a partir de um ancestral comum, ao invés de ter sido especificamente concebido para cada espécie. E o padrão de descendência comum formado por essa estrutura é muitas vezes apontado como uma forte evidência para a evolução. (Berra, 21; Campbell et al, 509; Futuyma, 47; Johnson e Losos, 298; Johnson e Raven, 286; Mayr, 26). Há um texto que chama de “exemplo clássico” de evidência evolutiva. (Ridley, 45)

biochemistry

Mas agora se sabe que esta previsão é falsa. A estrutura de dígitos nos tetrápodes não se conforma com o padrão de descendência comum. Na verdade, apêndices (estrutura locomotora) têm várias estruturas de dígitos e elas são distribuídas através das espécies de várias maneiras. Isto é encontrado tanto em espécies existentes quanto no registro fóssil. Como explicado pelo evolucionista Stephen Jay Gould, “A conclusão parece inevitável, e uma velha ”certeza” deve ser duramente revertida. (Gould)

Isto significa que os evolucionistas não podem modelar as estruturas e o padrão de distribuição observados, como uma mera consequência de descendência comum. Em vez disso, uma história evolutiva complicada é necessária (Brown) onde a estrutura pentadáctila “re-evolui” em diferentes linhagens, e apêndices evoluem, são perdidas, e depois evoluem novamente. E como concluído em um estudo recente: “Nossos resultados filogenéticos apoiam exemplos independentes de perda de membro completo, bem como vários exemplos de perda e reaquisição de dígitos, tal como a perda e reaquisição da  abertura do ouvido externo (“orelha”). Ainda mais impressionante, encontramos um forte apoio estatístico para a reaquisição de uma forma do corpo (estrutura) pentadáctilo de um ancestral com dígitos a menos… Os resultados do nosso estudo se juntam a um corpo emergente de literatura, mostrando um forte suporte estatístico para a perda de caracteres, seguido por reaquisição evolutiva de estruturas complexas associadas a uma forma generalizada do corpo pentadáctilo.(Siler e Brown)

Referencias:

 

 

Berra, Tim. 1990. Evolution and the Myth of Creationism. Stanford: Stanford University Press.

 

Brown, R., et. al. 2012. “Species delimitation and digit number in a North African skink.” Ecology and Evolution 2:2962-73.

 

Campbell, Neil, et. al. 2011. Biology. 5th ed. San Francisco: Pearson.

 

Darwin, Charles. 1872. The Origin of Species. 6th ed. London: John Murray.

http://darwin-online.org.uk/content/frameset?itemID=F391&viewtype=text&pageseq=1

 

Futuyma, Douglas. 1982. Science on Trial: The Case for Evolution. New York: Pantheon Books.

 

Gould, Steven Jay. 1991. “Eight (or Fewer) Little Piggies.” Natural History 100:22-29.

 

Johnson, G., J. Losos. 2008. The Living World. 5th ed. New York: McGraw-Hill.

 

Johnson, G., P. Raven. 2004. Biology. New York: Holt, Rinehart and Winston.

 

Mayr, Ernst. 2001. What Evolution Is. New York: Basic Books.

 

Ridley, Mark. 1993. Evolution. Boston: Blackwell Scientific.

Siler C., R. Brown. 2011. “Evidence for repeated acquisition and loss of complex body-form characters in an insular clade of Southeast Asian semi-fossorial skinks.” Evolution 65:2641-2663.

 

 

Estudo sugere que os seres humanos podem detectar até mesmo as menores unidades de luz.

By Phys Org 

[Do blog: Texto adaptado – Fontes em Inglês – Imagem do Phys Org ]

 

Uma pesquisa de Patologia Molecular na Áustria mostrou que os seres humanos podem detectar a presença de um único fóton, a menor unidade mensurável de luz. Estudos anteriores haviam estabelecido que indivíduos humanos aclimatados à escuridão, eram capazes de relatar apenas flashes de cinco a sete fótons.

 

light
 

Credit:Petr Kratochvil/public domain 

 

O trabalho foi conduzido por Alipasha Vaziri, professor associado e chefe do Laboratório de Neurotecnologia e Biofísica na Rockefeller e investigador adjunto do Instituto de Pesquisa de Patologia Molecular. Isso foi publicado esta semana na Nature Communications.

º Notável precisão

Se você imaginar isso, é notável: um fóton, a menor entidade física com propriedades quânticas dos quais a luz consiste, está interagindo com um sistema biológico que consiste em bilhões de células, tudo em um ambiente quente e úmido“, diz Vaziri. “A resposta que o fóton gera sobrevive por todo o caminho até o nível de nossa consciência, apesar do (onipresente) ruído de fundo. Qualquer detector feito pelo homem teria de ser arrefecido e isolado do ruído para se comportar da mesma maneira.

Além de gravar a habilidade do olho humano em registrar um único fóton, os pesquisadores descobriram que a probabilidade de fazê-lo foi reforçada quando um segundo fóton havia brilhado alguns segundos antes, como se um fóton “preparasse” o sistema para registrar o próximo.

° Uma fonte de luz quântica

Experimentos designados anteriormente para testarem a sensibilidade do olho humano, sofreram com a falta de tecnologia apropriada, diz Vaziri. “Não é trivial projetar estados de luz que contenham um ou qualquer outro número exato de fótons“, diz ele. “Isso ocorre porque o número de fótons em uma fonte de luz clássica, seja a partir de uma lâmpada ou um laser, segue determinadas distribuições estatísticas. Embora você possa atenuar a luz para reduzir o número de fótons, você normalmente não pode determinar um número exato.

A equipe de Vaziri construiu uma instalação de luz, frequentemente utilizada em óptica quântica e estudos de informação quântica, chamado “spontaneous parametric down-conversions” ou SPDC, que usa um processo em que um fóton de alta energia decai em um cristal não linear. O processo gera exatamente dois fótons com cores complementares. Na montagem experimental, um dos fótons foi enviado para o olho do sujeito, enquanto o outro foi enviada para um detector, permitindo aos cientistas manterem um registo de quando cada fóton foi transmitido para o olho.

º Primeira evidência

Para chegar a suas conclusões, Vaziri e seus colaboradores combinaram a fonte de luz com um protocolo psicofísico inédito, chamado de “duas alternativas de escolha forçada” (2AFC), na qual os sujeitos são repetidamente solicitados para escolherem entre dois intervalos de tempo, onde um dos quais contém um único fóton, enquanto o outro é um espaço em branco.

Os dados recolhidos a partir de mais de 30.000 testes, demonstraram que os seres humanos podem, de fato, detectar um único incidente de fóton em seu olho, com uma probabilidade significativamente acima do acaso.

A próxima coisa que queremos saber é: como é que um sistema biológico atinge essa sensibilidade? Como se consegue isso na presença de ruído? Esse é o único mecanismo para a visão, ou ele poderia nos dizer algo mais geral sobre a forma como os outros sistemas poderiam ter evoluído para detectar sinais fracos na presença de ruído?” indaga Vaziri.

Filósofo ateu acha que “nunca temos acesso direto aos nossos pensamentos”

By Evolution News 

[Obs: Texto adaptado – Links em inglês – A imagem é do EnV]

 

Huike_thinking

 

Em um post intitulado “Por fim: um pensador racional em “The Stone”, o biólogo ateu e negador do livre-arbítrio,  Jerry Coyne, cita o companheiro ateu Alex Rosenberg, professor de filosofia na Universidade Duke .

Rosenberg:

Nós nunca temos acesso direto aos nossos pensamentos. Como Peter Carruthers já havia argumentado primeiramente, a auto-consciência é apenas a leitura da mente voltada para dentro … Não há nenhum ponto de vista em primeira pessoa.

Nosso acesso aos nossos próprios pensamentos é tão indireto e falível como o nosso acesso aos pensamentos de outras pessoas. Nós não temos acesso privilegiado às nossas próprias mentes. Se nossos pensamentos dão o verdadeiro significado para nossas ações, nossas palavras, nossas vidas, então não podemos; nunca, estarmos certos sobre o que dizer ou fazer, ou para essa matéria, o que pensamos ou porque pensamos isso.

Nem sequer está claro o que “Nós nunca temos acesso direto aos nossos pensamentos” significa. Claro que temos acesso direto aos nossos pensamentos. Pode-se definir a experiência em primeira pessoa (ou seja, pensamento) como “aquilo que temos acesso direto.

Uma característica marcante da mente é que ela é incorrigível. Nossos pensamentos são nossos, estamos sempre certo sobre a existência dos nossos próprios pensamentos, e um observador nunca pode estar certo sobre o pensamento de outra pessoa, se o observador e a pessoa discordar. Se eu estou pensando de uma maçã vermelha, então eu estou pensando em uma maçã vermelha. Se o meu amigo diz: “Não está não. Você está pensando de um Corvette azul“, então eu estou certo e meu amigo está errado. Você não pode estar errado sobre o conteúdo bruto do que você está pensando.

Agora isso não significa que você não pode ter um pensamento equivocado (uma proposição falsa) ou que você não pode ter um mal-entendido (talvez a maçã que estou pensando é mais marrom do que o vermelha). Mas meu pensamento é o meu pensamento. Eu tenho acesso direto a ele – eu o experimento – e as outras pessoas não.

Então é claro que há um ponto de vista na primeira pessoa. Nosso ponto de vista único, é na primeira pessoa. Isso é o que “ponto de vista” significa. É a vista do “ponto” de um ser humano, que é a primeira pessoa por definição.

Agora, é claro, compreender as motivações para nossos pensamentos, e a correspondência entre nossas crenças e realidade, estão abertos ao debate.Podemos não saber exatamente por que pensamos algo e sobre algo. Mas nós sabemos – incorrigivelmente – que achamos alguma coisa e sobre alguma coisa.

Como tantas outras reivindicações materialistas bizarras sobre a mente, a afirmação de Rosenberg é auto-refutável. Se não temos acesso direto aos nossos pensamentos, por que iriamos assumir que o que Rosenberg tem escrito, tem qualquer relação com o que ele realmente pensa? Se Rosenberg não tem acesso direto aos seus próprios pensamentos, não há nenhuma maneira de saber o que ele realmente pensa. Mesmo que ele não saiba o que ele realmente pensa.

As teorias materialistas sobre a mente beiram a loucura.
Se um homem entra em um consultório médico e diz: “Eu não tenho, em tempo algum, acesso direto aos meus pensamentos e não tenho um ponto de vista na primeira pessoa“, este homem vai ser encaminhado para um psiquiatra e pode ser involuntariamente internado até que se prove que ele não é um perigo para si mesmo ou para os outros.

Se o mesmo cara entra no departamento de filosofia na Universidade de Duke, ele recebe um mandato.

 

O naturalismo metodológico comete a falácia “petição de princípio”!

Por Sociedade Origem e Destino – Johannes Janzen

Larmer considera um argumento como segue (ver original aqui):

 

 

8_circulo_vicioso

 

1. ) Se alguém é um naturalista metafísico, então deveria ser um naturalista metodológico, isto é, jamais postular entidades não físicas como a causa de um evento físico.

2. ) Não se deveria acreditar em entidades não físicas sem boa evidência.

3. ) Não há boa evidência para entidades não naturais.

4. ) Portanto, não se deveria aceitar o naturalismo metafísico, e por extensão lógica, o naturalismo metodológico.

Ele então desenvolve um diálogo entre um naturalista metafísico e seu oponente acerca da premissa 3.

 

NN [oponente]: Eu discordo que não há boa evidência para entidades não naturais.

MN [naturalista metafísico]: Tal evidência não pode existir.

NN: Por que?

MN: Porque qualquer investigação das causas de eventos físicos deve empregar o naturalismo metodológico, isto é, deve considerar que, em princípio, nunca é legítimo considerar uma causa não natural para um evento físico.

NN: Lembre-me uma vez mais para uma boa razão para pensar que o naturalismo metafísico é verdadeiro.

MN: Uma boa razão para pensar que o naturalismo metafísico é verdadeiro é que não há boa evidência para existência de entidades não naturais.

NN: Será que o naturalismo metodológico nunca permitiria postular uma entidade não natural como a causa de um evento físico?

MN: Não. Já apresentei isso de forma clara.

NN: Deixe-me ver se entendi corretamente. A sua aceitação do naturalismo metafísico é baseada no fato que não há evidência que entidades não naturais alguma vez causaram eventos físicos?

MN: Sim.

NN: E o seu endosso do naturalismo metodológico decorre de sua aceitação do naturalismo metafísico?

MN: Sim.

NN: Isso parece uma petitio principii (“petição de princípio”). Você endossa o naturalismo metafísico com base que não há evidência que entidades não naturais jamais tenham causado eventos físicos, mas adota uma metodologia que exclui a possibilidade de jamais reconhecer evidência de causas não naturais. Você está usando sua metafísica para justificar sua aceitação do naturalismo metodológico, mas sua aceitação do naturalismo metodológico serve para garantir que mesmo que existam evidência para existência de causas não físicas jamais poderão ser reconhecidas como tal.