Andaimes De Rede Flexíveis BIOINSPIRADOS Para Regeneração De Tecidos Moles

Por Thamarasee Jeewandara | Medical Xpress

04.Outubro.2023

Conceito de design inverso e técnicas de fabricação de estruturas de rede flexíveis para regeneração de tecidos moles. Ilustração esquemática de andaimes de conduíte eletrofiado (A) e andaimes de rede flexível (B) implantados nos nervos ciáticos defeituosos e nos tendões de Aquiles. (C) Uma configuração representativa de SNM retangular (células unitárias 3 × 4) e o detalhe geométrico de um feixe curvo. (D) Curva de tensão-deformação normalizada representativa do músculo gastrocnêmio de rato e o módulo tangente correspondente versus tensão. (E) Gráfico de contorno do parâmetro fenomenológico c em relação aos principais parâmetros geométricos da microestrutura curva. Os parâmetros geométricos utilizados nos andaimes de rede flexível para nervo ciático, tendão de Aquiles e músculo gastrocnêmio são marcados por círculos no gráfico. (F) Comparações de curvas de tensão normalizadas entre o tecido biológico alvo, FEA do projeto de rede inicial e o otimizado. (G) Processo de fabricação de andaime de rede flexível, (i) exposição; (ii) desenvolvimento; (iii) deposição química de vapor; (iv) fundição de solução PCL; (v) desmoldagem e ondulação; e (vi) eletrofiação. (H) Imagens ópticas de andaime de rede flexível (para nervos ciáticos) antes e depois da eletrofiação do filme ultrafino nanofibroso PCL. (I) Imagem SEM para uma conexão central em um andaime de rede flexível sem filme PCL (i) [região de caixa azul em (H)] e vistas ampliadas da conexão (ii). (J) Imagem SEM para um segmento de microestrutura curva com filme PCL [região ciano-box em (H)]. (K) Configurações iniciais e deformadas do andaime de rede tubular para nervo ciático obtido da FEA (i). A direita apresenta curvas tensão-deformação de redes planares e tubulares obtidas a partir de FEA, estrutura de rede planar fabricada com e sem filme PCL ultrafino, andaime de conduíte eletrofiado e nervo ciático real (ii). (L) Resultados semelhantes para o projeto de andaime de rede para reproduzir curvas tensão-deformação do tendão de Aquiles. Barras de escala, 800 μm (H) e 100 μm (I e J). Crédito da foto: SC, Universidade Tsinghua. Crédito: Science Advances, doi: 10.1126/sciadv.adi8606

Durante a implantação de andaime sintético em um ambiente clínico, a incompatibilidade mecânica enxerto-hospedeiro é um problema de longa data para a regeneração de tecidos moles. Embora os bioengenheiros tenham denotado numerosos esforços para resolver este desafio, o desempenho regenerativo dos andaimes sintéticos pode ser limitado por condições lentas de crescimento tecidual quando comparado aos autoenxertos, juntamente com defeitos mecânicos.

Em um novo relatório na Science Advances, Shunze Cao e uma equipe de cientistas em engenharia, mecânica e cirurgia ortopédica da Universidade de Tsinghua, na China, desenvolveram uma classe de andaimes de rede flexíveis para projetar com precisão respostas mecânicas não lineares.

As estruturas teciduais resultantes aumentaram a regeneração tecidual através da redução da incompatibilidade mecânica enxerto-hospedeiro.

Eles incluíram uma estrutura de rede tubular com uma estrutura de rede flexível, com microestruturas curvas para construir as propriedades mecânicas desejadas e oferecer um microambiente adequado para o crescimento celular. Os cientistas usaram modelos de ratos com defeitos do nervo ciático ou lesões no tendão de Aquiles para mostrar o desempenho regenerativo SUPERIOR que EXCEDEU os andaimes de conduítes eletrofiados clinicamente aprovados.

Andaimes de tecido de bioengenharia adequados para tradução pré-clínica

Lesões de tecido mole do nervo e , tendões, ligamentos e cartilagens representam um problema de saúde em todo o mundo.

Clinicamente, autoenxertos e aloenxertos são planos cirúrgicos clínicos comumente adotados que estão em uso clínico para tratar defeitos de nervos periféricos, enquanto enfrentam limitações NOTÁVEIS, como fontes limitadas e questões éticas.

Andaimes artificiais para regeneração de tecidos moles podem facilmente contornar esses limites para obter resultados promissores de regeneração. No entanto, o potencial de tradução dos andaimes biocompatíveis continua a ser um desafio para a regeneração tecidual devido à incompatibilidade mecânica entre a elevada rigidez dos andaimes artificiais e os tecidos receptores.

O biólogo Lecuit afirmou que “onde a forma está em jogo, as forças funcionarão em cada instância”.

Neste trabalho, Cao e colegas introduziram um método de DESIGN RACIONAL para uma classe de andaimes de rede BIOMIMÉTICOS e flexíveis PARA replicar RESPOSTAS MECÂNICAS não lineares dos tecidos e ORIENTAR a regeneração tecidual através de maior biocompatibilidade do enxerto e do hospedeiro.

Os pesquisadores desenvolveram uma rede flexível e implantaram a estrutura em experimentos com animais com modelos de defeito do nervo ciático de ratos e do tendão de Aquiles para obter resultados promissores para reparo de tecidos moles na clínica.

Caracterizações de andaimes de rede flexíveis e andaimes de conduítes eletrofiados sob estiramento axial, flambagem e compressão lateral. Respostas de tração uniaxiais cíclicas e configuração deformada obtidas a partir de FEA de (A) andaime de rede flexível e (B) andaime de conduíte. (C) Configurações deformadas do andaime de rede flexível (i) e do andaime de conduíte eletrofiado (ii) após flambagem por compressão (10 ciclos), com a cor denotando a distribuição de deformação plástica. (D) Razões de torção calculadas (ou seja, diminuição normalizada do diâmetro interno na região de torção) do andaime de rede flexível (para nervo ciático) e andaime de conduíte eletrofiado sob compressões axiais cíclicas. (E) Respostas compressivas laterais do andaime de rede flexível (i) e imagens ópticas de configurações iniciais e deformadas (ii). (F) Respostas compressivas laterais do andaime de conduíte eletrofiado (i) e imagens ópticas de configurações iniciais e deformadas (ii). (G) Respostas compressivas laterais do andaime treliçado (i) e imagens ópticas de configurações iniciais e deformadas (ii). Barras de escala, 2 mm [(C), (E), (F) e (G)]. Crédito da foto: SC, Universidade Tsinghua. Crédito da foto: SC, Universidade Tsinghua. Crédito: Science Advances, doi: 10.1126/sciadv.adi8606

Projetos de engenharia racional para criar andaimes de rede flexíveis

O andaime de rede flexível continha uma estrutura tubular de rede macia e um filme nanofibroso ultrafino desenvolvido na superfície externa da rede tubular. Eles introduziram um PROJETO DE ENGENHARIA INVERSA desenvolvido em um modelo de materiais de rede flexível com microestruturas curvilíneas.

Eles então PROJETARAM os andaimes de rede flexíveis combinando litografia, deposição química de vapor e eletrofiação para completar o desenvolvimento de um andaime de rede bicamada. Usando as CONSTRUÇÕES, eles estudaram o desenvolvimento de microestruturas curvas para regeneração de tecidos moles. Em seguida, usando análise de elementos finitos e experimentos em laboratório, a equipe testou as respostas mecânicas dos andaimes de rede flexíveis.

Comportamento mecânico dos andaimes de rede flexíveis

A incompatibilidade mecânica entre o tecido receptor e os andaimes do conduíte eletrofiado pode resultar em regeneração ineficaz, devido à tensão de tração na sutura. Para avaliar esse efeito, eles conduziram respostas de tração uniaxiais de andaimes de rede flexíveis em comparação com andaimes de conduítes eletrofiados.

O andaime de rede flexível apresentou risco MUITO MENOR de arrancamento da sutura do que o andaime de conduíte eletrofiado devido à tensão de tração muito menor. Os andaimes de rede mostraram EXCELENTE flexibilidade e capacidade de reter a patência do conduto luminal, SEM falhas mecânicas durante os experimentos de regeneração.

Resultados de regeneração dos tendões de Aquiles. (A) Ilustração esquemática do desenho do experimento animal no modelo de defeito do tendão de Aquiles de rato. (B) coloração H&E (i) e coloração Masson (ii) de tendões regenerados em andaime de conduíte eletrofiado e andaime de rede flexível às 4 e 8 semanas de pós-operatório. (iii) Densidade de células em fibras de tendão regeneradas obtidas a partir de coloração H&E usando ImageJ (valor médio ± DP). (iv e v) Diagramas de rosa dos ângulos da fibra regenerada em relação à linha horizontal usando ImageJ. (C) coloração PSR do tendão saudável (i) e tendões regenerados em andaime de rede flexível (ii), bem como andaime de conduíte eletrofiado (iii). (D) Imagens de andaime de rede flexível implantado (i) e andaime de conduíte eletrofiado (ii). (E) (i) Pegadas representativas de ratos implantados com andaime de rede flexível e andaime de conduíte eletrofiado em 2, 4, 6 e 8 semanas de pós-operatório. (ii) Análises do índice funcional de Aquiles (AFI) de ratos implantados com estrutura de rede flexível e estrutura de conduíte eletrofiado. Zero AFI indica normal e valores negativos indicam comprometimento funcional. (F) (i e ii) Coloração de Masson do músculo gastrocnêmio no grupo tratado cirurgicamente, onde a área vermelha é a fibra muscular. (iii) Área média das fibras musculares no andaime de conduíte eletrofiado e no andaime de rede flexível (a coluna mostra o valor médio ± DP). (G) Respostas de tração uniaxiais do tecido nervoso saudável e dos tendões de Aquiles regenerados com base no andaime de conduíte eletrofiado, bem como no andaime de rede flexível. Barras de escala, 100 μm (B), 100 μm (C), 1 cm (D) e 300 μm (F). *P < 0,05, ***P < 0,001, n.s., não significativo. Crédito da foto: Y.W., o Quarto Centro Médico do Hospital Geral Chinês do PLA. Crédito: Science Advances, doi: 10.1126/sciadv.adi8606

Validando o desempenho regenerativo dos andaimes de tecido

A equipe de estudo validou o desempenho regenerativo da estrutura flexível conduzindo experimentos utilizando modelos de ratos com longos defeitos nos nervos ciáticos.

Além dos andaimes de rede flexíveis, a equipe testou andaimes de conduítes eletrofiados e andaimes de treliça com microestruturas retas e enxertos de nervos autólogos.

Os experimentos incluíram análises histológicas, biomecânicas ou funcionais. A regeneração nervosa também acompanhou a regeneração dos vasos sanguíneos para melhorar o desempenho regenerativo das estruturas de rede flexíveis em comparação com as estruturas de conduíte eletrofiadas.

Os andaimes de rede flexíveis mostraram EXTENSAS aplicações durante a regeneração de tecidos moles em um modelo de defeito no tendão de Aquiles de rato com rede flexível e andaimes de conduítes eletrofiados. Enquanto as fibras regeneradas passavam por um processo de remodelação com a estrutura de rede flexível, a maior parte do colágeno foi convertida do tipo III para o tipo I. Os cientistas estudaram a função dos tendões regenerados conduzindo análises quantitativas com CatWalk para representar vídeos de caminhada de ratos com defeitos no tendão de Aquiles reparado no pós-operatório em duas semanas

Panorama

Dessa forma, Shunze Cao e colegas implementaram um projeto racional de engenharia reversa e estruturas de rede flexíveis biomiméticas para aumentar a eficiência da regeneração de tecidos moles. Os recursos leves, altamente flexíveis e mecanicamente biomiméticos da estrutura de rede são atraentes para o tratamento clínico de lesões de tecidos moles.

A PLATAFORMA DE DESIGN forneceu uma ferramenta fundamental para estudar e compreender a relação entre microambientes mecânicos e respostas biológicas, juntamente com respostas biológicas de células e tecidos. A equipe conseguiu combinar investigações experimentais com análises de bioinformática para revelar mecanismos moleculares subjacentes aos efeitos pró-regeneração de estruturas de rede flexíveis biomiméticas.


[Ênfase adicionada]


Mais informações: Shunze Cao et al, Inversely engineered biomimetic flexible network scaffolds for soft tissue regeneration, Science Advances (2023). DOI: 10.1126/sciadv.adi8606

Sean V. Murphy et al, Opportunities and challenges of translational 3D bioprinting, Nature Biomedical Engineering (2019). DOI: 10.1038/s41551-019-0471-7

Bactérias Magnéticas: Microrganismos Podem Ajudar A Extrair Metais Pesados Perigosos De Águas Residuais

Pela Associação Helmholtz de Centros de Pesquisa Alemães | Phys.Org

09.Maio.2023

Bactérias magnetotáticas ligam urânio em sua parede celular (à direita). Isso pode ser usado para purificar a água contaminada com urânio, separando as bactérias carregadas com um ímã (à esquerda). Crédito: B. Schröder/HZDR

[Ênfase adicionada]

Uma equipe de pesquisa no Helmholtz-Zentrum Dresden-Rossendorf (HZDR) conseguiu purificar a água contendo urânio usando um tipo especial de bactéria conhecida como bactéria magnetotática. O nome deriva de sua capacidade de reagir a campos magnéticos. Elas podem acumular metais pesados dissolvidos em suas paredes celulares. Essas descobertas da pesquisa também lançaram uma nova luz sobre a interação entre urânio e bioligantes.

Nossos experimentos são voltados para aplicações industriais potenciais no campo da remediação microbiológica da água, especialmente quando ela está contaminada com metais pesados do tipo que você encontra na água de drenagem de minas nas antigas minas de urânio“, explica a Dra. Evelyn Krawczyk-Bärsch, da Instituto de Ecologia de Recursos do HZDR.

Para este PROJETO, buscamos a ajuda de um grupo muito especial de seres vivos: as “, acrescenta seu colega, Dr. Johannes Raff, e continua: “Devido à sua estrutura, eles estão positivamente PREDESTINADOS para tal tarefa.”

Por apresentarem uma característica que as diferencia de outras bactérias, as bactérias magnetotáticas formam cristais magnéticos nanoscópicos dentro da célula. Eles são organizados como uma fileira de eles e tão PERFEITAMENTE formados que os humanos atualmente seriam incapazes de reproduzi-los sinteticamente. Cada cristal magnético individual é incorporado em uma membrana protetora.

Juntos, os cristais e a membrana formam o chamado magnetossomo, que as bactérias usam para se alinhar com o da Terra e se orientar em seu habitat. Também os torna adequados para processos de separação simples.

Bactérias magnetotáticas podem ser encontradas em quase todos os ambientes aquosos, desde até água salgada, incluindo ambientes com muito poucos nutrientes.

O microbiologista Dr. Christopher Lefèvre até os descobriu nas fontes termais de Nevada. Foi dele e de seu colega, Dr. Damien Faivre, da Comissão Francesa de Energias Alternativas e Energia Atômica (CEA), que os cientistas de Rossendorf adquiriram sua cepa de bactéria, sem mencionar os conselhos de especialistas sobre a melhor forma de preservá-las – porque, apesar de serem bastante comuns, cultivá-las requer algum conhecimento especializado.

▪️ Coletores de metais pesados estáveis em um ambiente hostil

Bactérias magnetotáticas podem sobreviver em valores de pH neutros, mesmo em contendo altas concentrações de urânio. Em uma ampla faixa de pH, elas se ligam ao urânio quase exclusivamente em suas paredes celulares – uma excelente base para lidar com as condições encontradas na água associada à mineração. Nenhum urânio penetra no interior da célula no processo, nem é limitado pelo magnetossomo.

Já se sabia que diferentes tipos de bactérias podem ligar metais pesados em suas paredes celulares, apesar de serem potencialmente estruturados de maneira bastante diferente.

No caso das bactérias magnetotáticas, as paredes celulares são formadas por uma camada de peptidoglicano, macromolécula composta por açúcares e aminoácidos que é o principal componente da parede celular de muitas bactérias, com apenas quatro nanômetros de espessura.

As paredes celulares das bactérias magnetotáticas são cercadas por uma membrana externa composta de açúcares e componentes semelhantes a gorduras: potenciais locais de ancoragem para o urânio.

Nossos resultados mostram que nas bactérias magnetotáticas o peptidoglicano desempenha o papel principal na absorção de urânio.

Esse conhecimento é novo e inesperado nesse tipo de bactéria“, diz Krawczyk-Bärsch. A equipe ainda conseguiu identificar três espécies específicas de peptidoglicano de urânio e confirmar suas descobertas com amostras de referência.

Esses novos insights só foram possíveis graças a uma combinação de microscopia e várias técnicas espectroscópicas, uma combinação que raramente é encontrada em qualquer outro lugar do mundo.

Ao cooperar com o Institute of Ion Beam Physics and Materials Research em HZDR, por exemplo, pudemos usar o microscópio eletrônico.

A proximidade de nossos institutos no local e a experiência de nossos colegas são uma grande vantagem para nosso trabalho“, Raff diz.

▪️ Significado para a purificação de água contaminada

Graças às suas propriedades magnéticas, as bactérias magnetotáticas podem ser facilmente separadas da água usando ímãs.

É concebível que isso possa ser feito em grande escala, realizando o tratamento diretamente na água de superfície ou bombeando água de e direcionando-a para estações piloto de tratamento“, explica Krawczyk-Bärsch.

O uso de bactérias magnetotáticas pode ser uma alternativa eficaz aos caros tratamentos químicos convencionais – porque as bactérias magnetotáticas são pouco exigentes em termos de manutenção; a implementação de outras soluções baseadas em biomassa, por outro lado, falha regularmente devido aos custos envolvidos no aumento das necessidades de nutrientes e energia.

E outro detalhe despertou o interesse dos pesquisadores por essas bactérias: suas proteínas podem estabilizar o ferro bivalente e trivalente para que a magnetita armazenada nos magnetossomos possa ser sintetizada. Então, estamos realmente nos perguntando como esses microorganismos interagem com radionuclídeos em vários estados de oxidação. Em particular, estamos pensando no plutônio“, explica Raff.

Isso ocorre porque, ao contrário do urânio, é concebível que sua semelhança química com o ferro signifique que ele use outras rotas para entrar na célula. Como isso influencia o comportamento de migração do plutônio na natureza e também pode ser uma maneira de remover o plutônio das águas residuais? Assim, o tópico também é relevante para a pesquisa de repositórios: quaisquer resultados podem ser incorporados à avaliação de segurança.

As descobertas foram publicadas no Journal of Hazardous Materials.


Mais informações: Evelyn Krawczyk-Bärsch et al, Peptidoglycan as major binding motif for Uranium bioassociation on Magnetospirillum magneticum AMB-1 in contaminated waters, Journal of Hazardous Materials (2022). DOI: 10.1016/j.jhazmat.2022.129376

Célula Modelo Visualizada Como Uma Fábrica Compacta

Por David Coppedge | Evolution News

30 de maio de 2023, 16h43

No episódio 6 da série de vídeos de Michael Behe, Secrets of the Cell, o animador retratou pequenos operários humanos, robôs e máquinas trabalhando dentro de uma célula bacteriana magnetotática.

Os personagens dos desenhos animados são vistos gerenciando a produção de energia, carregando docas com empilhadeiras em miniatura, codificando software, empacotando os magnetossomos contendo ferro para entrega em correias transportadoras e fazendo todos os tipos de coisas com as quais podemos nos relacionar em nível humano. Células reais, embora operem com muitos dos mesmos requisitos funcionais, são moles.

Elas não se parecem com a animação. Como podemos visualizar as entranhas de uma célula de uma forma que relacione a aparência real com as operações de fábrica que acontecem?

Capturar todas as partes internas de uma célula em suas relações complexas deu muito trabalho, mas alguns pesquisadores estabeleceram um novo patamar para imagens biofísicas. O Allen Institute em Seattle divulgou notícias em 1º de abril que descrevem seu trabalho visualizando o “espaço da forma” de uma célula típica. O cientista sênior Matheus Viana explica o pensamento:

“Sabemos que em biologia, forma e função estão inter-relacionadas, e entender a forma da célula é importante para entender como as células funcionam”, disse Viana.

“Criamos uma estrutura que nos permite medir a forma de uma célula e, no momento em que você faz isso, pode encontrar células com formas semelhantes e, para essas células, pode olhar para dentro e ver como tudo está organizado.” [Enfase adicionada.]

▪️ O Espaço da Forma é o Espaço da Função

A primeira tarefa do projeto foi fixar a forma exterior. Identificar a forma de células-tronco geneticamente modificadas saudáveis não foi fácil, porque elas são moles. Não há dois idênticos, mesmo quando cultivados nas mesmas condições.

As células-tronco no meio da amostra de tecido epitelial têm formas diferentes daquelas nas bordas.

Para complicar ainda mais a tarefa está o fato de que nem todas as células semelhantes executam as mesmas funções ao mesmo tempo.

Algumas podem estar em mitose quando observadas; isso afeta profundamente a forma da célula.

Os pesquisadores descobriram que a maioria de suas 215.081 células eram em forma de feijão ou pêra em vários graus. Medindo a “bean-ness” e “pera-ness” de milhares de células de acordo com 8 critérios de forma, eles chegaram a uma forma média.

Isso permitiu que eles estudassem as localizações de 25 organelas e outras partes internas que eles seguiram usando marcadores fluorescentes.

O resultado é a célula modelo rotativa mostrada no comunicado de imprensa. Tem uma semelhança distante com a fábrica compartimentada de Behe.

Observe suas próprias palavras revelando semelhanças:

Quando eles olharam para a posição das 25 estruturas destacadas, comparando essas estruturas em grupos de células com formas semelhantes, eles descobriram que todas as células se organizavam de maneiras notavelmente semelhantes.

Apesar das enormes variações na forma das células, sua organização interna era surpreendentemente consistente.

Se você está olhando como milhares de trabalhadores de colarinho branco organizam seus móveis em um prédio de escritórios alto, é como se cada trabalhador colocasse sua mesa bem no meio de seu escritório e seu arquivo precisamente no canto esquerdo, não importa o tamanho ou a forma do escritório.

Pode-se aplicar essa descrição à imagem da fábrica de células Behe.

O centro de controle, centro de importação e centro de entrega tendem a seguir uma organização interna previsível.

▪️ Visualizando Alterações Funcionais Durante a Mitose

O primeiro conjunto de dados da equipe do Allen Institute compreendia uma “grande população de linha de base de células em interfase”. Em seguida, eles estudaram as formas das células nas bordas externas dos tecidos epiteliais. Ambos os conjuntos de dados envolviam imagens estáticas. As coisas ficaram realmente interessantes quando eles adicionaram a 4ª dimensão: o tempo.

Sua maior conquista foi um modelo 3D incorporando observações de células em divisão – mapeando todas as 25 organelas e estruturas – durante cinco estágios da mitose. O resultado é uma “célula-tronco mitótica interativa” colorida e interativa que os biólogos acharão profundamente interessante para explorar em IMSC.AllenCell.org.

Eu recomendo fortemente que os leitores passem um pouco de tempo no site. Isso me lembra um projeto descrito no filme Metamorfose, da Illustra, em que o biólogo Richard Stringer fez uma série temporal de imagens de ressonância magnética de uma crisálida de borboleta, cortou-as em centenas de quadros e construiu um modelo 3D do que acontece durante a transformação de crisálida em borboleta. A Illustra codificou as estruturas com cores para que os espectadores pudessem assistir de qualquer ângulo enquanto as asas tomavam forma, o sistema digestivo era dramaticamente reorganizado e todos os novos órgãos para o adulto eram construídos.

Da mesma forma, na ferramenta de visualização Allen Cell, os espectadores podem observar o que acontece com cada organela durante a mitose. Esta é uma experiência muito mais rica do que a que os alunos têm na biologia do ensino médio, onde o foco geralmente está nos cromossomos. Agora, pode-se ver o que acontece com as mitocôndrias, o aparelho de Golgi, o nucléolo, o envelope nuclear, os lisossomos, as junções comunicantes, os filamentos de actina e tudo mais durante os cinco estágios mitóticos. Os espectadores podem girar e ampliar a célula, ligar e desligar as 25 organelas, reproduzir uma animação de rotação e observar as partes em diferentes graus de detalhe.

A equipe notou que algumas organelas permanecem relativamente estáveis durante a mitose, migrando para os nós apicais (lifonodos auxiliares), enquanto outras, como o envelope nuclear e o Golgi, sofrem mudanças dramáticas, essencialmente desintegrando-se e reorganizando-se em novas estruturas, como músicos de bandas marciais em uma formação “dispersa”. Os professores de biologia vão adorar esta ferramenta de visualização.

Para os defensores do DI, abre novas oportunidades para hipóteses baseadas em design: por exemplo, o que orquestra a sequência particular de mudanças de cada organela de uma célula para duas células e o que controla suas relações espaciais com outras organelas?

A equipe de Allen vê sua ferramenta de “espaço de forma” como um complemento para estudos baseados em proteínas.

Outras abordagens sistemáticas baseadas em imagens catalogaram a localização de proteínas humanas em vários tipos de células e usaram as localizações de proteínas e estruturas dentro das células para identificar diferenças nos padrões espaciais intracelulares entre as células em estados distintos. Nosso trabalho complementa essas abordagens com foco na análise da organização celular 3D no nível intermediário das estruturas celulares (em vez de proteínas individuais) e na geração de medições quantitativas de aspectos distintos da organização, o que permite comparações estatísticas e fornece uma visão mais sutil, definição sistemática da organização e reorganização celular.

Juntos, esses estudos trazem uma dimensão faltante crucial – isto é, o componente espaço-temporal – para a revolução unicelular.

O conjunto de dados de imagem completo e os algoritmos de análise apresentados aqui, bem como todos os reagentes, métodos e ferramentas necessários para gerá-los, são compartilhados de forma facilmente acessível (https://www.allencell.org/).

Esses dados estão disponíveis a todos para análises biológicas posteriores e como referência para o desenvolvimento de ferramentas e abordagens voltadas para uma compreensão holística do comportamento celular.

Tendo um modelo de uma célula saudável normal digitalizada em um computador, os profissionais médicos poderão identificar estados anormais mais cedo.

Assista ao vídeo livre de Darwin “Como você mede uma célula humana?” para testemunhar a emoção que sentiram quando sua célula modelo foi montada após sete anos de trabalho. E este é apenas o começo. O novo modelo era todo para um tipo de célula, mas um corpo humano tem muitos tipos diferentes de células atuando em múltiplas situações, sujeitas a diferentes patologias.

“Este estudo reúne tudo o que temos feito no Allen Institute for Cell Science desde que o instituto foi lançado”, disse Ru Gunawardane, Ph.D., diretor executivo do Allen Institute for Cell Science. “Construímos tudo isso do zero, incluindo as métricas para medir e comparar diferentes aspectos de como as células são organizadas.

O que me deixa realmente empolgado é como nós e outras pessoas da comunidade podemos agora desenvolver isso e fazer perguntas sobre biologia celular que nunca poderíamos fazer antes.”

A grande equipe de Viana publicou seus resultados em acesso aberto na Nature em 4 de janeiro.

As únicas coisas que “evoluíram” no artigo foram as próprias técnicas inteligentemente projetadas pelos cientistas para geração de imagens e realização de experimentos. Todo o resto estava em “linguagem de máquina”—

Compreender como um subconjunto de genes expressos dita o fenótipo celular é um desafio considerável devido ao grande número de moléculas envolvidas, sua combinatória e a infinidade de comportamentos celulares que determinam.

Aqui, reduzimos essa complexidade focando na organização celular — uma leitura chave e condutora do comportamento celular — no nível das principais estruturas celulares que representam organelas distintas e máquinas funcionais, e geramos o WTC-11 hiPSC Single-Cell Image Dataset v1, que contém mais de 200.000 células vivas em 3D, abrangendo 25 estruturas celulares importantes.

O esforço pioneiro da equipe de Allen para digitalizar uma célula-tronco normal 3D em mitose pode agora ser expandido por outras equipes que desejam investigar outros tipos de células – neurônios, células musculares, eritrócitos, células ósseas – em qualquer outro organismo, de micróbios a mamíferos.

Lembro-me de fotos de vários mamíferos embrionários no útero: uma girafa tomando forma, um elefante, um camundongo. Uma vez que a sequência básica da gestação foi visualizada para o ser humano, tornou-se fascinante procurar semelhanças e diferenças em outros mamíferos. Da mesma forma, o projeto de Allen visualizando uma “célula-tronco modelo” começa o que certamente levará a modelos adicionais para outros tipos de células.

Se, como os defensores do DI sabem por experiência, a complexidade especificada na biologia cresce em função do detalhe, o futuro parece promissor para a apologética do design. Leeuwenhoek teria ficado surpreso.

▪️ Anedota

Há notícias sobre bactérias magnetotáticas que o Dr. Behe discutiu em seu vídeo.

A Associação Helmholtz para Centros de Pesquisa Alemães relata (via Phys.org) que esses micróbios podem remover metais pesados, incluindo urânio, de águas residuais. Devido à sua estrutura, eles estão positivamente predestinados para tal tarefa”, diz o artigo, observando que eles podem ser facilmente separados da água por meio de ímãs. citações notáveis:

Por apresentarem uma característica que as diferencia de outras bactérias, as bactérias magnetotáticas formam cristais magnéticos nanoscópicos dentro da célula. Eles são arranjados como uma fileira de contas e tão perfeitamente formados que os humanos atualmente seriam incapazes de reproduzi-los sinteticamente. Cada cristal magnético individual é incorporado em uma membrana protetora.

Juntos, os cristais e a membrana formam o chamado magnetossomo, que as bactérias usam para se alinhar com o campo magnético da Terra e se orientar em seu habitat. Também os torna adequados para processos de separação simples.

Bactérias magnetotáticas podem ser encontradas em quase todos os ambientes aquosos, desde água doce até água salgada, incluindo ambientes com muito poucos nutrientes. O microbiologista Dr. Christopher Lefèvre até as descobriu nas fontes termais de Nevada.

Decodificando Os Mecanismos Por Trás Da Montagem De Proteínas BAR Que Ditam A Curvatura Celular

Pelo Instituto Nara de Ciência e Tecnologia | Phys.Org

26.Abril.2023

As membranas celulares desempenham um papel crítico, servindo como unidades de contenção e separando o espaço celular interno do ambiente extracelular. Proteínas com unidades funcionais distintas desempenham um papel fundamental na facilitação das interações proteína-membrana.

Por exemplo, as proteínas do domínio Bin-Anfifisina-Rvs (BAR) estão envolvidas na regulação da curvatura da membrana celular. Essa dobra física das membranas celulares ajuda as células a realizar vários processos biologicamente importantes, como endocitose e motilidade celular.

Embora as proteínas BAR conduzam a curvatura da membrana reunindo-se em unidades oligoméricas altamente ordenadas, o mecanismo subjacente que regula esse fenômeno permanece amplamente desconhecido.

Agora, um estudo realizado por pesquisadores do Japão revelou o mecanismo que impulsiona a montagem oligomérica de uma proteína contendo o domínio BAR nas superfícies da .

O estudo, publicado na revista Science Advances, foi liderado por Shiro Suetsugu, Wan Nurul Izzati Wan Mohamad Noor e Nhung Thi Hong Nguyen, do Instituto de Ciência e Tecnologia de Nara (NAIST).

Suetsugu diz: “O número relativamente pequeno de domínios BAR oligoméricos em túbulos de membrana estreita dificulta a análise de sua montagem. Portanto, usamos o monitoramento de transferência de energia de ressonância de fluorescência para analisar a montagem oligomérica da proteína GAS7 contendo F-BAR, porque a GAS7 oligomérica monta em maior do que as outras.

Para elucidar o mecanismo envolvido na montagem de GAS7 em superfícies de membrana, os pesquisadores empregaram uma técnica chamada (FRET). Neste método, os pesquisadores rotularam as unidades GAS7b com marcadores de proteínas fluorescentes para monitorar a magnitude e o tempo da montagem do GAS7.

A observação da emissão de fluorescência indicou que a montagem do GAS7 nas superfícies da membrana lipídica é um processo rápido e iniciado em segundos. Este processo foi reforçado pela presença de várias proteínas, incluindo a proteína da SÍNDROME de Wiskott-Aldrich (WASP)/N-WASP, WISH, Nck, a pequena GTPase Cdc42 ativada e um receptor fagocítico ancorado na membrana.

A montagem de GAS7 na membrana também foi examinada ao microscópio, usando vesículas de membrana gigantes. A proteína deve se ligar à membrana uniformemente se não oligomerizar, mas GAS7 claramente acumulada na parte da membrana, demonstra a montagem oligomérica pela presença dessas proteínas.

A equipe examinou ainda mais o papel da WASP na montagem do GAS7. WASP SOFRE MUTAÇÕES em pacientes com SÍNDROME de Wiskott-Aldrich, que está associada a vários DISTÚRBIOS IMUNOLÓGICOS. A este respeito, os pesquisadores viram que a montagem GAS7 regulada FOI ABOLIDA pelas MUTAÇÕES WASP tanto in vitro quanto durante a fagocitose (o engolfamento mediado por membrana celular de partículas grandes).

Este último, segundo os pesquisadores, foi surpreendente, porque a GAS7 é conhecida por estar envolvido na fagocitose. Portanto, as análises forneceram uma explicação para a fagocitose DEFEITUOSA observada em macrófagos de pacientes com SÍNDROME de Wiskott-Aldrich.

Em conclusão, WASP, Cdc42 e outras proteínas que comumente se ligam às proteínas da superfamília do domínio BAR promovem a montagem de GAS7 nas membranas lipídicas. Além disso, a montagem do domínio BAR nas superfícies da membrana serve como um “andaime” ou plataforma para a ligação de outras proteínas, o que facilita ainda mais a sinalização de proteínas abaixo da superfície.

Resumindo os resultados, Suetsugu conclui: “Como a proteína WASP comumente se liga à superfamília de proteínas BAR, é provável que o mecanismo de montagem observado aqui também funcione para outras proteínas BAR. Acreditamos que nosso estudo fornece informações inovadoras para estudos sobre a formação da forma celular e estudos condensados de “.

[Ênfase adicionada]


Mais informações: Wan Nurul Izzati Wan Mohamad Noor et al, Small GTPase Cdc42, WASP, and scaffold proteins for higher order assembly of the F-BAR domain protein, Science Advances (2023). DOI: 10.1126/sciadv.adf5143. www.science.org/doi/10.1126/sciadv.adf5143

Complexo Proteico Recém-Descoberto Desempenha Um Papel Vital Na Proteção E Estabilidade Do RNA

Pela Universidade de Ciência e Tecnologia King Abdullah | Phys.Org

08.Mar.23

YB1 e HuR regulam a estabilidade de alvos comuns de mRNA contendo um sítio de consenso rico em U. (A) Células C2C12 em crescimento exponencial tratadas com siRNAs direcionados a YB1 (siYB1), HuR (siHuR) ou tratadas com um siRNA de controle (siCtl) foram usadas para avaliar os níveis de estado estacionário de Myog, MyoD e cMyc mRNAs. Os níveis de mRNA foram avaliados por RT-qPCR usando primers específicos, padronizados contra os níveis de mRNA GAPDH e plotados em relação à condição siCtl. Os dados são apresentados ± o SEM de três experimentos independentes. *P < 0,05, **P < 0,005, ***P < 0,0005 (teste t) (B–D) A estabilidade dos mRNAs Myog, MyoD e cMyc em células C2C12 esgotadas ou não (siCtl) de YB1 (siYB1 ) ou HuR (siHuR) foi determinado por experimentos de busca de pulso ActD. As células foram tratadas com Actinomicina D (ActD) por 0, 2, 4 ou 6 h e o RNA total foi usado para análise RT-qPCR. O nível de expressão do mRNA em cada ponto de tempo foi normalizado para os níveis de GAPDH mRNA e plotado em relação à abundância de cada mensagem em 0 h de tratamento com ActD (considerado como 100%). Os dados na figura são apresentados ± o SEM de três experimentos independentes. *P < 0,05, **P < 0,005 (teste t). Crédito: Nucleic Acids Research (2023). DOI: 10.1093/nar/gkac1245

Duas proteínas se juntam para PROTEGER e ESTABILIZAR o RNA enquanto ele carrega o código de formação de músculos através da célula. Uma compreensão mais aprofundada desse complexo estabilizador de RNA pode ter implicações para influenciar a recuperação muscular e o tratamento de doenças.

O RNA, uma molécula frágil, atua como um intermediário que transporta copiado do DNA para as fábricas de produção de na célula, onde o código é TRADUZIDO para formar os vários componentes minúsculos que, juntos, nos tornam quem somos.

“Mas o RNA não é mais visto apenas como um canal intermediário passivo”, diz a bioquímica Brenda Janice Sánchez, da KAUST Smart-Health Initiative. “Ele atua como um ponto de CONTROLE regulatório, ESSENCIAL para o funcionamento NORMAL de todos os processos biológicos”.

Isso significa que vários aspectos da maquinaria celular precisam trabalhar juntos PARA EVITAR que esses RNAs mensageiros se degradem – e para mantê-los em movimento – e, finalmente, garantir sua TRADUÇÃO em seu DESTINO FINAL em proteína.

Se qualquer parte desse processo for perturbada, será significativamente afetada, levando a um comportamento celular ANORMAL ou até mesmo à morte.

Agora, Janice Sánchez e seus colegas da KAUST e da McGill University, no Canadá, identificaram um que é crucial PARA a estabilidade do RNA mensageiro durante a formação das fibras musculares. O complexo é formado por duas proteínas: o antígeno humano R (HuR) e a proteína de ligação Y-Box 1 (YB1). Seu estudo foi publicado na Nucleic Acids Research.

Crédito: Universidade de Ciência e Tecnologia Rei Abdullah

Os papéis precisos de cada proteína individual neste processo de estabilização ainda precisam ser descobertos. Mas pesquisas adicionais que separam os detalhes de como tudo isso funciona podem ajudar os cientistas a influenciar a quantidade e os tipos de proteínas produzidas no músculo, bem como em outros tecidos a qualquer momento.

“E se pudéssemos promover a associação de HuR a YB1 durante a terapia de recuperação muscular?” pergunta Janice Sánchez. “Isso poderia levar a mais ou melhores fibras musculares?

Aprender a controlar a renovação do RNA durante a formação de fibras musculares pode ter imensas repercussões no desenvolvimento de novas terapêuticas que previnem patologias relacionadas aos músculos.”

Os cientistas já sabiam que o HuR está envolvido na estabilização de RNAs mensageiros contendo sequências distintas de bases nitrogenadas, chamadas de elementos ricos em AU, em suas regiões não traduzidas.

Mas o HuR tem funções múltiplas e às vezes opostas, pois também pode promover a degradação do RNA mensageiro.

O biocientista da KAUST, Imed-Eddine Gallouzi, liderou Janice Sanchez e a equipe para descobrir a rede de proteínas que poderia estar envolvida na GARANTIA da capacidade do HuR de estabilizar o RNA mensageiro especificamente DURANTE a formação de fibras musculares.

Eles fizeram isso usando anticorpos para isolar HuR de células musculares precursoras de camundongos (chamadas mioblastos) e, em seguida, empregando uma técnica chamada espectrometria de massa para identificar as proteínas ligadas a ele. YB1 se destacou porque também é conhecido por estar envolvido na estabilização e ligação do RNA mensageiro.

A equipe então alvejou o gene que codifica YB1 para desligá-lo em mioblastos e descobriu que isso reduzia significativamente a eficiência dessas células para amadurecer em células musculares.

Além disso, quando os genes foram direcionados em mioblastos normais para produzir quantidades maiores de HuR, a formação de fibras musculares foi aprimorada. Isso não aconteceu, porém, em mioblastos com a proteína YB1 DESLIGADA. Testes posteriores estabeleceram que HuR e YB1 formam um complexo que se liga ao elemento rico em AU em RNAs .

“Estabelecer a rede de proteínas de ligação ao RNA que interagem com o HuR, bem como dissecar o mecanismo pelo qual esses complexos estão envolvidos em processos vitais, como a formação de fibras musculares, será fundamental para nossa compreensão do dogma central da biologia molecular, de quando o código é transcrito para o RNA do DNA, para quando é TRADUZIDO em proteínas”, diz Gallouzi. “Nosso estudo mostra que a afinidade do HuR pelo seu alvo de RNA é diretamente influenciada pela de ligação ao RNA com a qual ele se associa.”

[Ênfase adicionada]


Mais informações: Brenda Janice Sánchez et al, The formation of HuR/YB1 complex is required for the stabilization of target mRNA to promote myogenesis, Nucleic Acids Research (2023). DOI: 10.1093/nar/gkac1245

Jim Tour Desmascara O Duplo Padrão E O Comentário Impreciso de Steve Benner Sobre a Origem da Vida

Por Brian Miller | Evolution News

21 de fevereiro de 2023, 9h54

Em meus artigos mais recentes (aqui, aqui), resumi como a personalidade do YouTube Dave Farina deturpou a pesquisa do químico sintético Bruce Lipshutz e como o colega químico sintético Lee Cronin distorceu a relevância de sua pesquisa para o mistério da origem da vida.

Agora, vou resumir James Tour desmascarado o duplo padrão aplicado por outro químico sintético, Steve Benner, ao avaliar a pesquisa da origem da vida de outros investigadores em comparação com a sua própria.

Veja (áudio em inglês) os vídeos do Tour abaixo:


Se Benner avaliasse seus experimentos pelo mesmo padrão que aplicava aos outros, ele teria reconhecido que suas tentativas de entender a origem da vida não renderam nada de valor. Seu fracasso é particularmente notável, visto que ele é uma figura importante no campo.

▪️ A Crítica Imprecisa de Benner ao Tour

Benner começou sua entrevista com Farina deturpando completamente o conteúdo dos vídeos de Tour, demonstrando que não os assistiu com atenção. Ele então afirmou a crítica de Tour aos experimentos que começam com compostos ultrapuros comprados comercialmente, depois os deixam interagir sob um controle muito estrito e, finalmente, extraem da confusão algumas moléculas que são biologicamente úteis. Tal pesquisa não tem relevância para o que poderia ter ocorrido na Terra primitiva.

Benner então afirmou que os químicos prebióticos “trabalham muito para não fazer essa crítica se aplicar”. Tour demonstrou que o retrato do campo de Benner é totalmente impreciso, listando numerosos químicos sintéticos que realizam o mesmo tipo de experimentos irrealistas.

Todo experimento que gerou algo útil para a vida teve que começar com misturas químicas irreais e empregar controle extremo do investigador, e todo experimento que começa com moléculas e condições realistas gera uma mistura intratável de inúmeras moléculas orgânicas que nunca poderiam contribuir para a origem da vida (aqui, aqui, aqui).

▪️ Sintetizando Nucleotídeos

Tour então analisou o experimento de Benner que produziu ribose, uma porção de nucleotídeos.

O experimento deixou o formaldeído e o glicolaldeído reagirem na presença de borato e outros minerais, e os produtos foram então identificados.

A reação rendeu ribose, mas apenas como um de um grande número de outros produtos, e a ribose se degradou em poucos dias.

Tour caracterizou o resultado do experimento como “lixo”. Como em todos esses experimentos, a ribose nunca poderia se separar dos outros compostos e então se combinar com uma nucleobase e fosfato para formar nucleotídeos em concentrações não-traços sob quaisquer condições naturais realistas.

Tour então expôs como o caminho proposto por Benner para gerar nucleotídeos depende da própria intervenção que Benner afirmou ter trabalhado duro para evitar.

Benner afirmou em seu artigo de 2019 publicado na revista Life que a ribose poderia ter reagido com amidotrifosfato (AmTP) para anexar um fosfato à ribose sem intervenção humana. No entanto, esta reação não funcionará com o produto do experimento de síntese de ribose de Benner. Em vez disso, a ribose ultrapura deve ser comprada comercialmente.

Além disso, Benner não divulgou os detalhes da reação do AmTP, mas simplesmente citou Krishnamurthy et al. (2000). No entanto, esse artigo detalha a enorme intervenção do investigador necessária para conduzir a reação. Tour também expôs como o AmTP e outros agentes de fosforilação, como o diamidofosfato, não poderiam ter se originado na Terra primitiva.

Todas as alegações de que essas moléculas são prebióticamente relevantes são baseadas em trilhas de citações que não levam a lugar nenhum.

Como problema final, Tour identificou o uso de cloreto de magnésio (MgCl 2 ) para viabilizar a reação. O desafio é que esse composto impediria que os nucleotídeos se ligassem em cadeias. Da mesma forma, as condições químicas necessárias para produzir ribose são diferentes daquelas necessárias para produzir nucleobases. Conseqüentemente, a síntese de nucleotídeos requer o transporte de moléculas para diferentes ambientes com tempo e condições muito mais orquestrados do que o que poderia ocorrer naturalmente.

▪️ Formando RNA Em Vidro de Basalto

Mais tarde em sua entrevista, Benner afirmou que seus colegas demonstraram que os nucleotídeos poderiam ter se ligado em longas cadeias em rochas antigas sem “materiais de partida puros ou intervenção humana constante”.

Tour detalhou como Benner deturpou completamente o estudo de 2022 ao qual ele se referiu.

Isso por vários motivos:

A formação de cadeias nunca teria ocorrido sem as condições experimentais cuidadosamente controladas. Mesmo com as condições irrealistas, o experimento gerou cadeias contendo muitos nucleotídeos ligados com as ligações erradas, de modo que as cadeias seriam inúteis para qualquer cenário de origem da vida.

A descrição de Benner da pesquisa dele e de seus colegas foi quase inteiramente sensacionalista.

O mesmo é verdade para as afirmações de que qualquer um dos principais desafios na explicação da origem da vida por meio de processos não direcionados foi resolvido.

Benner, Cronin e muitos outros pesquisadores fariam bem em levar a sério uma crítica dos experimentos de origem da vida escritos pela própria Fundação de Benner para Evolução Molecular Aplicada:

“As comunidades que estudam as origens da vida divergiram nos últimos anos”, observou Steven Benner, coautor do estudo publicado online na revista Astrobiology .

“Uma comunidade revisita questões clássicas com esquemas químicos complexos que exigem química difícil realizada por químicos qualificados”, explicou Benner. “Seus belos trabalhos manuais aparecem em revistas de renome, como Nature e Science .”

No entanto, precisamente por causa da complexidade dessa química, ela não pode explicar como a vida realmente se originou na Terra.

Sobre A Origem Da Vida, James Tour Expõe A Irrelevância Da Pesquisa De Lee Cronin

Por Brian Miller | Evolution News
16 de fevereiro de 2023, 13h38

Em meu último artigo, resumi a segunda temporada da série de vídeos do químico sintético James Tour, da Rice University, sobre a origem da vida. Aqui, vou expandir a resposta de Tour a seu colega químico sintético Lee Cronin, onde ele detalha o exagero consistente de Cronin sobre o progresso que ele e outros pesquisadores fizeram para desvendar o mistério da origem da vida. Veja [áudio em inglês] as Partes 1 a 3 abaixo:


▪️ Hype Autocatalítica

Um tema comum nas teorias da origem da vida centra-se no que é chamado de conjuntos de reações autocatalíticas, onde o produto de uma reação catalisa (isto é, acelera) outra reação cujo produto catalisa outra reação em uma rede de reações interconectadas. Os teóricos esperam que tais conjuntos de reações possam ter evoluído para um metabolismo inicial em uma célula primitiva.

Em sua entrevista, Cronin descreveu sua pesquisa sobre um conjunto de aglomerados atômicos autocatalíticos baseados em molibdênio e sugeriu que isso fornece evidências de que uma química comparável na Terra primitiva poderia ter evoluído para uma célula autônoma. Tour descreveu o conjunto de reações em seu experimento como “um monte de bobagens”, uma vez que não se assemelham a nada que poderia ter ocorrido na Terra antiga.

A rede autocatalítica de Cronin só pode existir em um ambiente de laboratório cuidadosamente controlado, e as reações não têm semelhança com o metabolismo celular ou qualquer processo relevante à vida. Em geral, as redes autocatalíticas orgânicas requerem uma engenharia cuidadosa para iniciar e persistir, e as teorias de origem baseadas em redes autocatalíticas enfrentam obstáculos intransponíveis, como reações colaterais que travariam o sistema.

▪️ Onde está a Ribose?

No próximo clipe de entrevista, Cronin afirmou que em outro experimento ele foi capaz de “dirigir” a química necessária para produzir ribose, o açúcar em nucleotídeos, para reduzir moléculas estranhas.

Tour destacou no artigo publicado de Cronin como ele apenas pensou ter reduzido o número de moléculas estranhas porque examinou apenas os produtos que não precipitaram da solução. Mesmo a solução que Cronin estudou continha um grande número de moléculas contaminantes, muitas das quais eram compostas pelos mesmos átomos da ribose, mas em configurações diferentes.

O produto do experimento não poderia auxiliar na origem da vida já que a ribose estava em concentrações tão pequenas, e nunca poderia ser separada das outras moléculas por nenhum processo natural.

As moléculas de ribose raramente, ou nunca, se combinam com as outras moléculas necessárias para formar nucleotídeos (ou seja, nucleobase e fosfato). Quaisquer nucleotídeos que se formassem estariam em concentrações tão minúsculas que nunca poderiam se ligar a uma cadeia de RNA suficientemente longa para beneficiar uma célula em desenvolvimento e, mesmo que os RNAs se formassem, eles se separariam rapidamente (aqui, aqui).

▪️ Aumentando o Calor

Cronin também descreveu seu experimento ligando aminoácidos em cadeias e, em seguida, afirmou que demonstrou a plausibilidade de aminoácidos ligando-se a proteínas na Terra primitiva. A turnê mostrou que Cronin novamente exagerou grosseiramente sua realização.

Seu experimento começou com aminoácidos homoquirais em purezas e concentrações que não poderiam ter ocorrido na Terra primitiva. Além disso, ele teve que aquecer os aminoácidos a 130°C (266°F) por 15 horas apenas para ligá-los em pequenas cadeias.

No entanto, essas altas temperaturas decompõem rapidamente a maioria dos blocos de construção da vida (aqui, aqui), então qualquer outro progresso em direção à vida seria perdido.

Igualmente problemático, as cadeias geradas continham tantas ligações incorretas e eram tão pequenas que eram biologicamente inúteis.

Tour enviou o artigo de Cronin a um químico de peptídeos para confirmar sua conclusão sobre a irrelevância do experimento de Cronin para explicar como os aminoácidos poderiam ter se formado em proteínas em um ambiente pré-biótico. Seu amigo respondeu que o experimento é “uma química interessante, mas não é prática para nada”. O elogio de Cronin à sua própria pesquisa foi puro exagero.

▪️ Protocélulas Oleosas

Em uma exibição final de bravata, Cronin afirmou ter demonstrado em outro experimento a formação de protocélulas e a replicação. Aqui estão suas palavras exatas:

A única coisa aqui é que fomos capazes de mostrar que podemos combinar catálise com moléculas que produziriam um material semelhante a uma célula e que conduziria a replicação da célula…

Então, o que mostramos é que você tem esse processo em que naturalmente faz células-filhas sem nenhuma informação, você sabe, nenhum DNA necessário, nenhuma genética necessária, nenhuma maquinaria complicada para que possamos obter a replicação antes dos genes.

Tour destacou o completo absurdo de comparar gotículas de óleo com células reais, ou mesmo membranas celulares, e equiparar a divisão de gotículas de óleo com a replicação celular. Tour também detalhou o enorme controle do investigador sobre as condições experimentais e os protocolos químicos altamente complexos necessários para formar as gotículas de óleo e conduzir a divisão.

Não apenas o experimento é irrelevante para a origem da vida, mas a química nunca poderia ocorrer sem equipamento de laboratório avançado e químicos altamente treinados. Tour propôs que a deturpação consistente de Cronin sobre a relevância de sua pesquisa para a origem da vida é uma consequência de ele não saber nada sobre química orgânica, uma deficiência que Cronin reconheceu.

Cientistas Descobrem Como São As Redes De Células-Tronco E De Onde Elas Vieram

Pela Universidade de Copenhague | Phys.Org

12.Dez.2022

Peixes celacantos e outros animais. Crédito: Woranop Sukparangsi

– – – – – – – – – – – – –

[Nota deste blog sobre este artigo: este artigo é uma peça evolucionista, logo entenda que o mesmo contém dados objetivos sim, mas possui o viés de confirmação evolucionista mas também possui o uso indevido pelos evolucionistas de linguagem teleológica, aristotelismo e o wishful thinking evolucionista de praxe, a ênfase adicionada não é por mera estética: evidencia vícios de linguagem teleológica descarados, dados claros onde se pode inferir o design inteligente por pura lógica, e evidencia a contraproducência do evolucionismo.]

Um coração batendo, um órgão complicado que bombeia sangue pelo corpo de animais e humanos, não é exatamente algo que você associa a uma placa de Petri em um laboratório.

Mas isso pode mudar no futuro e pode salvar a vida de pessoas cujos próprios órgãos falham. A pesquisa está agora um passo mais perto disso.

Para projetar órgãos artificiais, primeiro você precisa entender as células-tronco e as INSTRUÇÕES GENÉTICAS que GOVERNAM suas propriedades notáveis. O professor Joshua Mark Brickman, do Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), desenterrou as origens evolutivas de um gene MESTRE que atua em uma rede de que INSTRUI as células-tronco.

“O primeiro passo na é entender a de genes que sustenta as chamadas células-tronco pluripotentes. Entender como sua função foi APERFEIÇOADA na pode ajudar a fornecer conhecimento sobre como construir células-tronco melhores”, diz Joshua Mark Brickman.

Células-tronco pluripotentes são células-tronco que podem se desenvolver em todas as outras células; por exemplo, células cardíacas. Se entendermos como as células-tronco pluripotentes se desenvolvem em um coração, estaremos um passo mais perto de replicar esse processo em laboratório.

▪️ Um ‘fóssil vivo’ é a chave para entender as células-tronco

A propriedade pluripotente das células-tronco – o que significa que as células podem se desenvolver em qualquer outra célula – é algo tradicionalmente associado aos mamíferos.

Agora Brickman e seus colegas descobriram que o gene mestre que controla as células-tronco e dá suporte à pluripotência também existe em um peixe chamado celacanto. Em humanos e camundongos, esse gene é chamado OCT4, e os pesquisadores descobriram que a versão do celacanto poderia substituir a dos mamíferos nas células-tronco do camundongo.

Além do fato de o celacanto pertencer a uma classe diferente dos mamíferos, ele também é chamado de “fóssil vivo”, pois há aproximadamente 400 milhões de anos se desenvolveu na forma que tem hoje. Tem barbatanas em forma de membros e, portanto, acredita-se que se assemelhe aos primeiros animais a se moverem do mar para a terra.

“Ao estudar suas células, você pode voltar na evolução, por assim dizer“, explica a professora assistente Molly Lowndes.

O professor assistente Woranop Sukparangsi continua: “O fator central que CONTROLA a rede de genes nas células-tronco é encontrado no celacanto. Isso mostra que a rede JÁ EXISTIA NO INÍCIO DA EVOLUÇÃO, potencialmente há 400 milhões de anos”.

Ao estudar a rede em outras espécies, como este peixe, os pesquisadores podem destilar quais são os conceitos básicos que sustentam uma célula-tronco.

“A beleza de retroceder na evolução é que os organismos se tornam mais simples. Por exemplo, eles têm apenas uma cópia de alguns genes essenciais em vez de muitas versões. Assim, você pode começar a separar o que é realmente importante para as células-tronco e usar isso para melhorar a forma como você cultiva células-tronco em um prato”, diz a estudante Ph.D. Elena Morganti.

▪️ Tubarões, ratos e cangurus

Além dos pesquisadores descobrirem que a rede em torno das células-tronco é muito mais antiga do que se pensava e encontrada em espécies antigas, eles também aprenderam como exatamente a evolução modificou a rede de genes para suportar .

Os pesquisadores analisaram os genes das células-tronco de mais de 40 animais, incluindo tubarões, camundongos e cangurus. Os animais foram selecionados para fornecer uma boa amostragem dos principais pontos de ramificação na evolução.

Os pesquisadores usaram para construir modelos tridimensionais das diferentes proteínas OCT4. Os pesquisadores puderam ver que a estrutura geral da proteína é mantida ao longo da evolução. Embora as regiões dessas proteínas conhecidas por serem importantes para NÃO MUDEM, as diferenças específicas da espécie em regiões aparentemente não relacionadas dessas proteínas alteram sua orientação, afetando potencialmente o quão bem ela suporta a pluripotência.

“Esta é uma descoberta muito empolgante sobre a evolução que não teria sido possível antes do advento de novas tecnologias. Você pode ver isso como uma EVOLUÇÃO INTELIGENTE pensando: ‘Não mexemos no motor do carro, mas PODEMOS movê-lo ao redor e MELHORAR o trem de força para ver se ele faz o carro andar mais rápido'”, diz Brickman.

O artigo foi publicado na revista Nature Communications.

O estudo é um projeto colaborativo que abrange Austrália, Japão e Europa, com parcerias estratégicas vitais com os grupos de Sylvie Mazan no Observatório Oceanológico de Banyuls-sur-Mer na França e o professor Guillermo Montoya no Novo Nordisk Foundation Center for Protein Research na Universidade de Copenhague.

[Ênfase adicionada]

____________________

Mais informações: Woranop Sukparangsi et al, Evolutionary origin of vertebrate OCT4/POU5 functions in supporting pluripotency, Nature Communications (2022). DOI: 10.1038/s41467-022-32481-z

Procurando Ouriços-Do-Mar Para Espumas Cerâmicas Mais Fortes

Por Virginia Tech | Phys.Org

Estereoma de equinoderme como um sólido celular bicontínuo. a Fotografia de um ouriço-do-mar H. mamillatus visto ventralmente . b Imagem SEM da estrutura do estereoma. Imagem óptica inserida da seção transversal de uma lombada. c Reconstruções µ-CT do estereoma e da estrutura de vazios correspondente (inserção). d s , d v , e d t representam as espessuras (diâmetros) de estereoma, estrutura de vazios e gargantas, respectivamente. d , e Rede celular 3D de estéreo e a estrutura de vazios correspondente com tipos de nós coloridos por suas conectividades. f , g As distribuições de espessura do estereoma ( d s ) e a estrutura de vazios correspondente ( d v ). h Renderização em 3D de pequenas gargantas ( d t  < 24 μm) para volume ( c ). i Distribuição de ds , dv e dt . _ _ j Distribuição da forma interfacial do estereoma. κ 1 e κ 2 são as curvaturas principais máxima e mínima, respectivamente. k Visualização de regiões em estéreo com distribuições de curvatura mostradas em (j), onde as regiões roxas e verdes correspondem a superfícies mínimas com curvatura média zero e a superfície de sela com maior densidade de distribuição, respectivamente. l Uma imagem SEM da superfície da ramificação do estereoma. Crédito: Nature Communications (2022). DOI: 10.1038/s41467-022-33712-z

– – – – – – – – – – – – – – – – – –

Ling Li, professor assistente do Departamento de Engenharia Mecânica da Virginia Tech, desvendou um mistério nas microestruturas porosas de exoesqueletos de ouriços-do-mar que podem levar à criação de cerâmicas sintéticas leves. Suas descobertas foram publicadas na Nature Communications.

As cerâmicas são altamente resistentes ao calor, o que as torna a escolha favorita para gerenciar as brutais demandas térmicas de veículos de alta velocidade que viajam mais rápido que a velocidade do som. Nessas velocidades vertiginosas, o ar comprimido cria atrito significativo contra o veículo, resultando em um rápido aumento no calor que encontra.

A resistência ao calor pode ser a força da cerâmica, mas a tolerância a danos é uma fraqueza. Um único impacto pontual em uma placa .

As cerâmicas tornam-se ainda menos tolerantes a danos quando são tornadas porosas para ; no entanto, a redução do peso é um requisito crítico para muitas aplicações estruturais, incluindo veículos de alta velocidade.

A Força Aérea dos EUA, um dos patrocinadores da pesquisa de Li, há muito se interessa em melhorar o desempenho mecânico dos materiais cerâmicos. Além de receber do Escritório de Pesquisa Científica da Força Aérea, a equipe de Li também obteve fundos da National Science Foundation.

Esses fundos combinados, recebidos pelo laboratório em 2018, equiparam os pesquisadores para explorar novos princípios de DESIGN incorporados nos sólidos celulares cerâmicos naturais formados por organismos como ouriços-do-mar. O exoesqueleto de um ouriço-do-mar é um tipo de sólido celular, ou “espuma”, assim chamado porque sua microestrutura é um conjunto de células abertas com bordas ou faces sólidas, agrupadas para preencher o espaço. As lacunas entre as células as tornam porosas, criando um material que pode ser mecanicamente mais eficiente do que estruturas densas.

▪️ Como lidar com os danos como um ouriço do mar

“Neste trabalho, achamos que encontramos algumas das principais estratégias que permitem que o ouriço-do-mar seja forte e resistente, oferecendo redução de peso com sua microestrutura porosa”, disse Li. “Este artigo da Nature Communications relata os resultados que encontramos do que está escondido dentro”.

Os espinhos dos ouriços-do-mar são rígidos, fortes e leves. Esses espinhos são feitos de um mineral quebradiço chamado , que é semelhante à cerâmica sintética, mas o ouriço tem uma tolerância muito maior a danos ao receber peso ou força. A equipe de Li testou esse princípio pressionando as espinhas mecanicamente, simulando o mesmo tipo de condição sob a qual uma cerâmica de engenharia pode precisar resistir.

Os espinhos do ouriço-do-mar deformaram-se graciosamente sob a força exercida sobre eles, em contraste com a falha catastrófica dos atuais sólidos celulares cerâmicos sintéticos. Esse comportamento de “falha graciosa” permite que os espinhos do ouriço-do-mar resistam a danos com capacidade significativa de absorção de energia.

No decorrer desta pesquisa, a equipe de Li descobriu alguns segredos que dão ao ouriço sua capacidade de se manter unido durante o carregamento mecânico.

▪️ Segredos das profundezas

“Existem alguns segredos nas características estruturais dos espinhos dos ouriços-do-mar. Um deles está relacionado à conexão dos ramos”, disse Li. “O segundo é o tamanho dos poros.”

Sob um microscópio, a equipe de Li observou uma arquitetura de ramos curtos interconectados. Uma rede de nós mantém esses ramos juntos, e um dos segredos da tolerância a danos do ouriço é o equilíbrio entre o NÚMERO de nós e ramos. Esse NÚMERO é PRECISAMENTE CRÍTICO porque nós com muitas ramificações conectadas farão com que a estrutura se torne mais frágil e quebrável.

Os nós na estrutura porosa em espinhos de ouriço-do-mar estão conectados a três ramos em média, o que significa que a rede de ramos sofrerá fratura induzida por flexão em vez de fratura induzida por estiramento mais catastrófica.

O segundo segredo está no tamanho das lacunas, ou poros, entre os ramos.

A equipe descobriu que as lacunas dentro da estrutura porosa dos espinhos dos ouriços-do-mar são apenas um pouco menores do que o tamanho dos galhos. Isso significa que, uma vez que os ramos fraturam, eles podem ser travados imediatamente por essas aberturas menores. Galhos quebrados se empilham uns sobre os outros nos poros, criando uma região densa que ainda é capaz de sustentar a carga.

Os ouriços-do-mar também têm uma morfologia de superfície diferente da cerâmica sintética.

Cerâmicas celulares fabricadas têm MUITOS DEFEITOS microscópicos em suas superfícies e internamente, tornando esses materiais mais suscetíveis a FALHAS. Este NÃO É O CASO da espinha do ouriço-do-mar, que tem uma superfície quase vítrea, lisa até a escala nanométrica. DEFEITOS são pontos a partir dos quais os danos podem começar, e A FALTA DE DEFEITOS significa a falta de locais propensos a FALHAS.

Li demonstrou essa ideia com um pedaço de papel. “Quando você tenta rasgar um pedaço de papel não danificado, o papel resiste a rasgar.

Se você fizer um pequeno rasgo na lateral do papel, no entanto, o rasgo continuará a partir desse ponto danificado.”

Com galhos, poros e uma superfície lisa em jogo, os espinhos leves do ouriço-do-mar alcançam alta resistência e tolerância a danos, distribuindo uniformemente o estresse dentro da estrutura e absorvendo energia com mais eficiência.

▪️ Fazendo a próxima geração de cerâmica

Com esse conhecimento, podemos recriar a suavidade, a falta de defeitos e as estruturas específicas de ramificações e nós necessárias para capitalizar os segredos do ouriço-do-mar? No momento, não podemos, porque os métodos atuais de processamento de cerâmica não estão lá.

Cerâmicas feitas sinteticamente são normalmente formadas em um .

O primeiro passo é criar a forma, e o segundo é queimar a peça para que a cerâmica endureça, o que lhe confere a resistência pela qual é conhecida. Os oleiros seguem esse método quando criam uma panela e a aquecem em um forno. Processos semelhantes também são usados para cerâmicas impressas em 3D, onde a etapa de impressão 3D forma a forma e, em seguida, a queima subsequente é necessária para produzir as peças cerâmicas finais.

Essa etapa de queima, ou sinterização, é a mais problemática para recriar a microestrutura do ouriço-do-mar, porque o processo de sinterização leva à formação de defeitos microscópicos, tornando-os de baixa resistência.

“No meu laboratório, também estamos interessados em COMO organismos como FORMAM esses sólidos celulares cerâmicos naturais“, disse Li.

“Esperamos que um dia possamos não apenas integrar os princípios de DESIGN de materiais a materiais cerâmicos leves de INSPIRAÇÃO biológica, mas também as estratégias de processamento de materiais aprendidas com sistemas naturais”.

[Ênfase adicionada]


Mais informações: Ting Yang et al, High strength and damage-tolerance in echinoderm stereom as a natural bicontinuous ceramic cellular solid, Nature Communications (2022). DOI: 10.1038/s41467-022-33712-z

Teoria Em Crise? A Insatisfação E A Proliferação De Novas Articulações

Por Jonathan Wells | Evolution News

Nota do editor: Temos o prazer de apresentar uma nova série do biólogo Jonathan Wells perguntando:

“O darwinismo é uma teoria em crise?” Este é o terceiro post da série, que é uma adaptação do livro recente, The Comprehensive Guide to Science and Faith. Encontre a série completa aqui.

[Aqui nesse blog (Em Defesa do DI) você pode encontrar os dois primeiros artigos aqui e aqui.]

Uma revolução científica é alimentada em parte pela crescente insatisfação entre os adeptos do velho paradigma. Isso leva a novas versões dos fundamentos teóricos do paradigma. Em seu livro de 1962, A Estrutura das Revoluções Científicas, o filósofo da ciência Thomas Kuhn escreveu:

A proliferação de articulações concorrentes, a vontade de tentar qualquer coisa, a expressão de descontentamento explícito, o recurso à filosofia e ao debate sobre os fundamentos, tudo isso são sintomas de uma transição da pesquisa normal para a extraordinária. 1

▪️ Problemas sérios com a teoria de Darwin

Um número crescente de biólogos agora reconhece que há sérios problemas com a teoria evolutiva moderna. Em 2007, o biólogo e filósofo Massimo Pigliucci publicou um artigo perguntando se precisamos de “uma síntese evolutiva estendida” que vá além do neodarwinismo. 2

No ano seguinte, Pigliucci e 15 outros biólogos (nenhum deles defensores do design inteligente) reuniram-se no Instituto Konrad Lorenz para Pesquisa em Evolução e Cognição, ao norte de Viena, para discutir a questão. A jornalista científica Suzan Mazur chamou esse grupo de “Altenberg 16”. 3

Em 2010, o grupo publicou uma coletânea de seus ensaios. Os autores desafiaram a ideia darwiniana de que os organismos poderiam evoluir apenas pelo acúmulo gradual de pequenas variações preservadas pela seleção natural, e a ideia neodarwiniana de que o DNA é “o único agente de variação e unidade de herança”. 4

▪️ “Uma visão do século 21”

Em 2011, o biólogo James Shapiro (que não era um dos Altenberg 16 e não é um defensor do design inteligente) publicou um livro intitulado Evolution: A View from the 21st Century. Shapiro expôs um conceito que chamou de engenharia genética natural e forneceu evidências de que as células podem reorganizar seus genomas de maneira intencional. De acordo com Shapiro, muitos cientistas reagiram à frase “engenharia genética natural” da mesma forma que reagem ao design inteligente porque parece “violar os princípios do naturalismo que excluem qualquer papel para uma inteligência orientadora fora da natureza”. Mas Shapiro argumentou que

o conceito de engenharia genética natural guiada por células está bem dentro dos limites da ciência biológica do século XXI. Apesar dos preconceitos filosóficos generalizados, as células agora são razoavelmente vistas como operando teleologicamente: seus objetivos são sobrevivência, crescimento e reprodução. 5

Em 2015, a Nature publicou uma troca de pontos de vista entre cientistas que acreditavam que a teoria evolutiva precisa “repensar” e cientistas que acreditavam que está tudo bem como está. Aqueles que acreditavam que a teoria precisa ser repensada sugeriram que aqueles que a defendem podem ser “assombrados pelo espectro do design inteligente” e, portanto, querem “mostrar uma frente unida para aqueles hostis à ciência”. No entanto, o primeiro concluiu que descobertas recentes em vários campos exigem uma “mudança conceitual na biologia evolutiva”. 6

Esses mesmos cientistas também publicaram um artigo em Proceedings of the Royal Society of London, no qual eles propuseram “uma estrutura conceitual alternativa”, uma “síntese evolutiva estendida” que retém os fundamentos da teoria evolutiva “mas difere em sua ênfase no papel dos processos construtivos no desenvolvimento e na evolução”. 7

▪️ Um encontro incomum em Londres

Em 2016, um grupo internacional de biólogos organizou uma reunião pública para discutir uma síntese evolutiva estendida na Royal Society em Londres. O biólogo Gerd Müller abriu a reunião apontando que a atual teoria evolutiva falha em explicar (entre outras coisas) a origem de novas estruturas anatômicas (ou seja, macroevolução). A maioria dos outros oradores concordou que a teoria atual é inadequada, embora dois oradores a tenham defendido.

Nenhum dos palestrantes considerou o design inteligente uma opção. Um orador chegou a caricaturar o design inteligente como “Deus fez isso” e, a certa altura, outro participante deixou escapar: “Deus não – estamos excluindo Deus”. 8

Os defensores de uma síntese evolutiva estendida propuseram vários mecanismos que eles argumentaram serem ignorados ou subestimados na teoria atual, mas nenhum dos mecanismos propostos foi além da microevolução (pequenas mudanças dentro das espécies existentes). Ao final da reunião, ficou claro que nenhum dos palestrantes havia cumprido o desafio proposto por Müller no primeiro dia. 9

Um artigo de 2018 na Evolutionary Biology revisou algumas das articulações ainda concorrentes da teoria evolucionária. O artigo conclui perguntando se as contínuas “divisões conceituais e tensões explicativas” serão superadas. 10 Enquanto eles continuarem, no entanto, eles sugerem que uma revolução científica está em andamento.

Em seguida, “Teoria em Crise? Circulando as carroças.”


Notas

  1. Kuhn, The Structure of Scientific Revolutions, 2d ed., 91.
  2. Massimo Pigliucci, “Do we need an extended evolutionary synthesis?,” Evolution 61 (2007), 2743-2749.
  3. Suzan Mazur, The Altenberg 16: An Exposé of the Evolution Industry (Wellington, New Zealand: Scoop Media, 2009).
  4. Massimo Pigliucci and Gerd B. Müller, Evolution: The Extended Synthesis (Cambridge, MA: MIT Press, 2010).
  5. James A. Shapiro, Evolution: A View from the 21st Century (Upper Saddle River, NJ: FT Press Science, 2011), 134-137.
  6. Kevin Laland, Tobias Uller, Marc Feldman, Kim Sterelny, Gerd B. Müller, Armin Moczek, Eva Jablonka, John Odling-Smee, Gregory A. Wray, Hopi E. Hoekstra, Douglas J. Futuyma, Richard E. Lenski, Trudy F.C. Mackay, Dolph Schluter, and Joan E. Strassmann, “Does evolutionary theory need a rethink?” Nature 514 (2014), 161-164.
  7. Kevin N. Laland, Tobias Uller, Marcus W. Feldman, Kim Sterelny, Gerd B. Müller, Armin Moczek, Eva Jablonka, and John Odling-Smee, “The extended evolutionary synthesis: its structure, assumptions and predictions,” Proceedings of the Royal Society of London B 282 (2015), 20151019.
  8. Paul A. Nelson, “Specter of intelligent design emerges at the Royal Society meeting,” Evolution News & Views (November 8, 2016), https://evolutionnews.org/2016/11/specter_of_inte/ (accessed August 22, 2020).
  9. Paul A. Nelson and David Klinghoffer, “Scientists confirm: Darwinism is broken,” CNS News (December 13, 2016). https://www.cnsnews.com/commentary/david-klinghoffer/scientists-confirm-darwinism-broken (accessed August 22, 2020).
  10. Alejandro Fábregas-Tejeda and Francisco Vergara-Silva, “Hierarchy Theory of Evolution and the Extended Evolutionary Synthesis: Some Epistemic Bridges, Some Conceptual Rifts,” Evolutionary Biology 45 (2018), 127-139.

Mecanismo Da Audição: Estrutura Da Parte Chave do Ouvido Interno

Por Oregon Health & Science University | Science Daily

[Observação desse blog: Artigo não reproduzido na sua totalidade. A imagem também não faz parte do artigo original.]

Cientistas da Oregon Health & Science University revelaram, pela primeira vez e em detalhes quase atômicos, a estrutura da parte-chave do ouvido interno responsável pela audição.


Este é o último sistema sensorial no qual essa maquinaria molecular fundamental permaneceu desconhecida”, disse o autor sênior Eric Gouaux, Ph.D., cientista sênior do OHSU Vollum Institute e investigador do Howard Hughes Medical Institute.

“A maquinaria molecular que realiza esse processo absolutamente incrível não foi resolvida por décadas”.

Até agora.

Os pesquisadores fizeram a descoberta desvendando a estrutura através de anos de pesquisas meticulosas para isolar o processo que permite que o ouvido interno converta vibrações em som, conhecido como complexo de transdução mecanosensorial.

O estudo, que revelou a estrutura através de microscopia crioeletrônica, foi publicado hoje na revista Nature.

As descobertas podem apontar o caminho para o desenvolvimento de novos tratamentos para deficiências auditivas, que afetam mais de 460 milhões de pessoas em todo o mundo.

A descoberta revela a arquitetura do complexo do ouvido interno que converte as vibrações em impulsos elétricos que o cérebro traduz como som. Conhecido como transdução mecanossensorial, o processo é responsável pelas sensações de equilíbrio e som.

Os cientistas exploraram o fato de que a lombriga Caenorhabditis elegans abriga um complexo mecanosensorial muito semelhante ao dos humanos.

Resolver a estrutura básica é o primeiro passo, segundo Gouaux.

“Isso sugere imediatamente mecanismos pelos quais se pode compensar esses déficits”, disse Gouaux. “Se uma mutação dá origem a um defeito no canal de transdução que causa perda auditiva, é possível projetar uma molécula que se encaixe nesse espaço e resgate o defeito. Ou pode significar que podemos fortalecer as interações que foram enfraquecidas.”

A perda auditiva pode ser herdada por meio de mutações genéticas que alteram as proteínas que compõem o complexo de transdução mecanosensorial. Ou pode ocorrer devido a danos, incluindo exposição prolongada a ruídos altos. Em ambos os casos, a descoberta dos pesquisadores da OHSU permite que os cientistas visualizem o complexo pela primeira vez.

A descoberta é uma conquista extraordinária, disse um dos principais pesquisadores de neurociência da OHSU, que não esteve diretamente envolvido na pesquisa.

“O campo da neurociência auditiva está esperando por esses resultados há décadas, e agora que eles estão aqui – estamos em êxtase”, disse Peter Barr-Gillespie, Ph.D., cientista pesquisador da OHSU e líder nacional em pesquisa auditiva. “Os resultados deste artigo sugerem imediatamente novos caminhos de pesquisa e, portanto, revigorarão o campo nos próximos anos”.

Barr-Gillespie também atua como diretor de pesquisa e vice-presidente executivo da OHSU.

Os pesquisadores resolveram o quebra-cabeça por meio de técnicas cuidadosas de cultivo e isolamento envolvendo 60 milhões de vermes ao longo de quase cinco anos.

“Passamos vários anos otimizando métodos de crescimento de vermes e isolamento de proteínas, e tivemos muitos momentos de ‘fundo do poço’ quando consideramos desistir”, a co-primeira autora Sarah Clark, Ph.D., pós-doutoranda no laboratório de Gouaux, escreveu em um resumo de pesquisa publicado pela Nature

[Ênfase adicionada]


Referência do jornal:

  1. Hanbin Jeong, Sarah Clark, April Goehring, Sepehr Dehghani-Ghahnaviyeh, Ali Rasouli, Emad Tajkhorshid, Eric Gouaux. Structures of the TMC-1 complex illuminate mechanosensory transduction. Nature, 2022; DOI: 10.1038/s41586-022-05314-8

Teoria Em Crise? Redefinindo A Ciência

Por Jonathan Wells | Evolution News
11 de outubro de 2022, 6h35

Nota do editor: Temos o prazer de apresentar uma nova série do biólogo Jonathan Wells perguntando:

“O darwinismo é uma teoria em crise?” Este é o segundo post da série, que é uma adaptação do livro recente, The Comprehensive Guide to Science and Faith. Encontre a série completa aqui.

Em seu livro de 1962, The Structure of Scientific Revolutions, o filósofo da ciência Thomas Kuhn observou que as revoluções científicas são frequentemente marcadas por disputas sobre o “padrão que distingue uma solução científica real de uma mera especulação metafísica”.

A teoria da gravidade de Newton sofreu resistência porque “a gravidade, interpretada como uma atração inata entre cada par de partículas de matéria, era uma qualidade oculta” como a “tendência a cair” medieval. Os críticos do newtonianismo alegaram que não era ciência e “sua dependência de forças inatas devolveria a ciência à Idade das Trevas”. 1

Séculos depois, alguns cientistas afirmaram que o big bang não era ciência. Em 1938, o físico alemão Carl F. von Weizsäcker deu uma palestra na qual se referiu à ideia relativamente nova de que nosso universo se originou em um big bang.

O renomado físico-químico Walther Nernst, que estava na platéia, ficou muito zangado. Weizsäcker escreveu mais tarde:

Ele disse que a visão de que poderia haver uma idade do universo não era ciência.

No começo eu não o entendia.

Ele explicou que a duração infinita do tempo era um elemento básico de todo pensamento científico, e negar isso significaria trair os próprios fundamentos da ciência.

Fiquei bastante surpreso com essa ideia e arrisquei a objeção de que era científico formar hipóteses de acordo com as dicas dadas pela experiência, e que a ideia de uma idade do universo era tal hipótese.

Ele respondeu que não poderíamos formar uma hipótese científica que contradissesse os próprios fundamentos da ciência.

Weizsäcker concluiu que a reação de Nernst revelou uma convicção “profundamente irracional” de que “o mundo havia tomado o lugar de Deus, e era uma blasfêmia negar-lhe os atributos de Deus”. 2

▪️ O Design Inteligente é Ciência?

Da mesma forma, o design inteligente tem sido criticado por não ser ciência.

Em 2004, o presidente da Sociedade Americana de Biologia Celular, Harvey Lodish, escreveu que o design inteligente “não é ciência” porque “as ideias que formam a base” dele “nunca foram testadas por nenhum escrutínio científico ou revisão por pares”. 3 Em 2005, a American Astronomical Society declarou:

“O Design Inteligente não atende à definição básica de uma ideia científica: seus proponentes não apresentam hipóteses testáveis e não fornecem evidências para seus pontos de vista”. 5 E a Sociedade Biofísica adotou uma política afirmando:

“O que distingue as teorias científicas” do design inteligente “é o método científico, que é conduzido por observações e deduções”. Como o design inteligente “não é baseado no método científico”, ele “não está no domínio da ciência”. 5

As alegações sobre evidências e revisão por pares nas declarações citadas acima são falsas. No entanto, as declarações ilustram que os críticos do design inteligente, como os críticos do newtonianismo e do big bang, afirmam que o novo paradigma não se qualifica como ciência.

Alguns escritores pró-Darwin argumentaram que o design inteligente é até mesmo anti – ciência.

Em 2006, o filósofo Niall Shanks escreveu que “uma guerra cultural está sendo travada nos Estados Unidos por extremistas religiosos que esperam voltar o relógio da ciência para os tempos medievais”. A “arma principal nesta guerra é… a teoria do design inteligente”. 6

Em 2008, o biólogo e escritor de livros didáticos Kenneth Miller afirmou que “para o movimento do DI, o racionalismo do Iluminismo, que deu origem à ciência como a conhecemos, é o verdadeiro inimigo”. Se o design inteligente prevalecer, escreveu ele, “a era moderna chegará ao fim”.

Para Miller, o que está em jogo “é nada menos que a alma científica da América”. 7

▪️ Uma definição diferente de ciência

É verdade que o design inteligente opera com uma definição de ciência que difere da definição usada pelos cientistas pró-Darwin. Para este último, a ciência é o empreendimento de buscar explicações naturais para tudo. Apenas os objetos materiais e as forças entre eles são reais; entidades como uma mente não humana (que teria que ser a fonte de qualquer design inteligente na natureza) são irreais. Na ciência darwinista, qualquer evidência que pareça sugerir design inteligente é ignorada ou descartada. Em 1999, um biólogo escreveu na Nature que “mesmo que todos os dados apontem para um designer inteligente, tal hipótese é excluída da ciência porque não é naturalista”. 8

Mas em um paradigma de design inteligente, a ciência procura seguir as evidências onde quer que elas levem. Segundo Kuhn, disputas como essa sobre a natureza da ciência são comuns nas revoluções científicas.

Em seguida , “Teoria em Crise? A insatisfação e a proliferação de novas articulações”.


Notas

  1. Kuhn, The Structure of Scientific Revolutions, 2d ed., 103-105, 163.
  2. Carl F. von Weizsäcker, The Relevance of Science (New York: Harper & Row, 1964), 151-153.
  3. Letter from Harvey F. Lodish to Ohio Governor Bob Taft (February 24, 2004). https://www.newswise.com/articles/ascb-president-says-creationism-does-not-belong-in-ohios-classrooms (accessed August 22, 2020).
  4. Statement on the Teaching of Evolution, American Astronomical Society (September 20, 2005). https://aas.org/press/aas-supports-teaching-evolution (accessed August 22, 2020).
  5. Statement on Teaching Alternatives to Evolution, Biophysical Society (November 2005). https://www.biophysics.org/policy-advocacy/stay-informed/policy-issues/evolution-1 (accessed August 22, 2020).
  6. Niall Shanks, God, the Devil, and Darwin (New York: Oxford University Press, 2006), xi–xii.
  7. Kenneth R. Miller, Only a Theory: Evolution and the Battle for America’s Soul (New York: Viking Press, 2008), 16, 190-191.
  8. Scott Todd, “A view from Kansas on that evolution debate,” Nature 401 (1999), 423.

O Darwinismo É Uma Teoria Em Crise?

Por Jonathan Wells | Evolution News
10 de outubro de 2022, 6h32

Nota do editor: Temos o prazer de apresentar uma nova série do biólogo Jonathan Wells perguntando:

“O darwinismo é uma teoria em crise?” Este é o primeiro post da série, que é uma adaptação do livro recente, The Comprehensive Guide to Science and Faith. Encontre a série completa aqui.

O que significa dizer que uma teoria está “em crise”? Não é suficiente apontar que uma teoria é inconsistente com a evidência.

Os críticos vêm apontando há décadas que o darwinismo não se encaixa nas evidências da natureza. O biólogo Michael Denton publicou Evolution: A Theory is Crisis em 1986. 1 Trinta anos depois, ele levou o ponto para casa com Evolution: Still a Theory in Crisis. 2

Mas o darwinismo ainda está conosco, por duas razões.

Primeiro, o darwinismo não é apenas uma hipótese científica sobre fenômenos específicos da natureza, como a teoria de Newton de que a força gravitacional entre dois corpos é inversamente proporcional ao quadrado da distância entre eles (século XVII), a teoria de Lavoisier de que as coisas queimam combinando com oxigênio (século 18), ou a teoria de Maxwell de que a luz é uma onda eletromagnética (século 19).

Darwin chamou A Origem das Espécies de “um longo argumento”, e uma parte central dele era um argumento teológico contra a ideia de que as espécies foram especialmente criadas. 3

Em segundo lugar, programas de pesquisa científica estabelecidos, como o darwinismo, nunca são abandonados apenas por causa de alguns problemas com as evidências.

A ideia de que todas as espécies são descendentes de um ou alguns ancestrais comuns que foram modificados por mutação e seleção natural manterá seu domínio até que um grande número de cientistas adote uma ideia concorrente. Atualmente, a principal ideia concorrente é o design inteligente (DI), que sustenta (contra Darwin) que algumas características dos seres vivos são melhor explicadas por uma causa inteligente do que por processos naturais não guiados.

A mudança, se e quando acontecer, será uma grande revolução científica.

Uma maneira de abordar esse fenômeno é por meio do livro de 1962 do filósofo da ciência Thomas Kuhn, The Structure of Scientific Revolutions. 4

Começarei resumindo alguns dos principais insights de Kuhn.

Em seguida, aplicarei esses insights ao conflito atual entre o darwinismo e o design inteligente. Ao fazê-lo, aponto alguns aspectos problemáticos do trabalho de Kuhn, mas concluo que eventos recentes justificam plenamente chamar o darwinismo de uma teoria em crise.

▪️ A Estrutura das Revoluções Científicas de Kuhn

De acordo com Kuhn, “ciência normal” é “pesquisa firmemente baseada em uma ou mais conquistas científicas passadas, conquistas que alguma comunidade científica em particular reconhece por um tempo como fornecendo a base para sua prática futura”.

Essas conquistas foram “suficientemente sem precedentes para atrair um grupo duradouro de adeptos para longe dos modos concorrentes de atividade científica”.

Elas também eram “suficientemente abertas para deixar todos os tipos de problemas” a serem resolvidos.

Kuhn chamou as conquistas que compartilham essas duas características de “paradigmas”. 5

Uma vez que um paradigma se torna dominante, a prática normal da ciência é simplesmente resolver problemas dentro desse paradigma.

No processo, forma-se uma “constelação institucional” que inclui “a formação de revistas especializadas, a fundação de sociedades especializadas e a reivindicação de um lugar especial no currículo”. 6 A última é muito importante, pois uma “característica da comunidade científica profissional [é] a natureza de sua iniciação educacional”. Nas “ciências naturais contemporâneas… o aluno depende principalmente de livros didáticos” até o terceiro ou quarto ano de pós-graduação, quando o aluno começa a fazer pesquisa independente. “É uma educação estreita e rígida, provavelmente mais do que qualquer outra, exceto talvez na teologia ortodoxa.” 7

▪️ Uma primeira linha de defesa

Kuhn escreveu,

Nenhuma parte do objetivo da ciência normal é suscitar novos tipos de fenômenos; na verdade, aqueles que não cabem na caixa geralmente não são vistos. Nem os cientistas normalmente pretendem inventar novas teorias, e muitas vezes são intolerantes com aquelas inventadas por outros. 8

No entanto, “nenhum paradigma que fornece uma base para a pesquisa científica resolve completamente todos os seus problemas”.

Quando surgem evidências anômalas, no entanto, a primeira linha de defesa dos cientistas geralmente é “inventar inúmeras articulações e modificações ad hoc de sua teoria para eliminar qualquer conflito aparente”.

Eles nunca simplesmente renunciam ao paradigma, a menos que outro esteja disponível para substituí-lo.

Assim, “a decisão de rejeitar um paradigma é sempre simultaneamente a decisão de aceitar outro”, e “o julgamento que conduz a essa decisão envolve a comparação de ambos os paradigmas com a natureza e entre si”. 9

▪️ Como os paradigmas se originam

A afirmação mais eficaz que os proponentes de um novo paradigma podem fazer é que “eles podem resolver os problemas que levaram o antigo a uma crise”. 10 Mesmo assim, Kuhn escreveu,

Os defensores da teoria e do procedimento tradicionais quase sempre podem apontar problemas que seu novo rival não resolveu, mas que, para eles, não são problemas… Em vez disso, a questão é qual paradigma deve no futuro guiar a pesquisa sobre problemas, muitos dos quais nenhum concorrente ainda pode reivindicar resolver completamente. É necessária uma decisão entre formas alternativas de praticar a ciência e, nas circunstâncias, essa decisão deve basear-se menos em conquistas passadas do que em promessas futuras. 11

Como se origina um novo paradigma? Kuhn escreveu,

Qualquer nova interpretação da natureza, seja uma descoberta ou uma teoria, surge primeiro na mente de um ou alguns indivíduos.

São eles que primeiro aprendem a ver a ciência e o mundo de maneira diferente, e sua capacidade de fazer a transição é facilitada por duas circunstâncias que não são comuns à maioria dos outros membros de sua profissão. 12

Primeiro, escreveu Kuhn, “sua atenção se concentrou nos problemas que provocam crises”. Em segundo lugar, esses indivíduos geralmente são “tão jovens ou tão novos no campo em crise que a prática os comprometeu menos profundamente do que a maioria de seus contemporâneos com a visão de mundo e as regras determinadas pelo velho paradigma”. 13

Segundo Kuhn,

Os paradigmas diferem em mais do que na substância, pois se dirigem não apenas à natureza, mas também à ciência que os produziu.

Eles são a fonte dos métodos, campos de problemas e padrões de solução aceitos por qualquer comunidade científica madura em um determinado momento.

Como resultado, a recepção de um novo paradigma muitas vezes exige uma redefinição da ciência correspondente. 14

Em seguida, “Teoria em Crise? Redefinindo a Ciência”.


Notas

  1. Michael Denton, Evolution: A Theory in Crisis (Bethesda, MD: Adler & Adler, 1986).
  2. Michael Denton, Evolution: Still a Theory in Crisis (Seattle, WA: Discovery Institute Press, 2016).
  3. Stephen Dilley, “Charles Darwin’s use of theology in the Origin of Species,” British Journal for the History of Science 45 (2012), 29-56.
  4. Thomas S. Kuhn, The Structure of Scientific Revolutions (Chicago, IL: University of Chicago Press, 1962).
  5. Thomas S. Kuhn, The Structure of Scientific Revolutions, 2d ed. (Chicago, IL: University of Chicago Press, 1970), 10.
  6. Kuhn, The Structure of Scientific Revolutions, 2d ed., 19, 93.
  7. Kuhn, The Structure of Scientific Revolutions, 2d ed., 164-166.
  8. Kuhn, The Structure of Scientific Revolutions, 2d ed., 24.
  9. Kuhn, The Structure of Scientific Revolutions, 2d ed., 77-79.
  10. Kuhn, The Structure of Scientific Revolutions, 2d ed., 153.
  11. Kuhn, The Structure of Scientific Revolutions, 2d ed., 157-158.
  12. Kuhn, The Structure of Scientific Revolutions, 2d ed., 144.
  13. Kuhn, The Structure of Scientific Revolutions, 2d ed., 144.
  14. Kuhn, The Structure of Scientific Revolutions, 2d ed., 103.

Forças Armadas na Célula Mantêm o DNA Saudável

Por David Coppedge | Evolution News
4 de outubro de 2022, 17h13

Repórteres científicos lutam por metáforas para descrever as operações complexas que eles veem acontecendo na célula. Por exemplo:

▪️ A Orquestra

Notícias da Universidade de Genebra comparam o genoma humano a uma “orquestra complexa”. Sua pesquisa levou a descobertas “inesperadas” e “surpreendentes” mostrando “comportamento harmonizado e sinérgico” na regulação dos genes. A metáfora de um maestro mantendo todos os vários jogadores em harmonia veio à mente:

Uma equipe de geneticistas suíços da Universidade de Genebra (UNIGE), da École Polytechnique Fédérale de Lausanne (EPFL) e da Universidade de Lausanne (UNIL) descobriu que a variação genética tem o potencial de afetar o estado do genoma em muitas posições aparentemente separadas e, assim, modular a atividade do gene, muito parecido com um maestro orientando os intérpretes de um conjunto musical para tocar com harmonia.

Esses resultados inesperados, publicados na Cell, revelam a versatilidade da regulação do genoma e oferecem insights sobre a forma como ela é orquestrada. [Enfase adicionada.]

▪️ As forças armadas

Outra metáfora popular entre os repórteres é “forças armadas”. Essa metáfora será instrutiva à medida que lemos sobre proteção do DNA e reparo de danos. Vejamos algumas das etapas desse processo onde encontraremos soldados, técnicos de emergência médica, ambulâncias e hospitais militares em ação, todos bem treinados e equipados para a defesa.

▪️ Vigilância e Inspeção

Qualquer operação militar disciplinada requer altos padrões.

Soldados no campo de treinamento sabem que os sargentos podem ser implacáveis ao inspecionar rifles, engraxates e camas de quartel.

Da mesma forma, as máquinas do genoma inspecionam o DNA em busca de erros e não toleram menos do que a perfeição.

Um artigo da Universidade Estadual da Carolina do Norte descreve a MutS, uma máquina que inspeciona fitas de DNA descompactadas em busca de erros.

Qualquer desencontro faz com que esse sargento pare e encare o recruta, mesmo que ele seja um em um milhão.

Felizmente, nossos corpos têm um sistema para detectar e reparar essas incompatibilidades – um par de proteínas conhecidas como MutS e MutL.

A MutS desliza ao longo do lado recém-criado da fita de DNA depois de replicada, revisando-a. Quando encontra uma incompatibilidade, ele se encaixa no local do erro e recruta a MutL para se juntar a ela.

A MutL faz um corte na fita de DNA recém-sintetizada para marcá-la como defeituosa e sinaliza uma proteína diferente para devorar a porção do DNA que contém o erro.

Em seguida, a correspondência de nucleotídeos recomeça, preenchendo a lacuna novamente. Todo o processo reduz os erros de replicação em cerca de mil vezes, servindo como melhor defesa contra mutações genéticas e os problemas que podem surgir delas, como o câncer.

▪️ Primeira resposta

Se ocorrerem vítimas, elas devem ser detectadas. Uma proteína chamada ATF3 é a capitã de um esquadrão que atua como “primeiro respondedor” a danos no DNA, como explica a Georgia Regents University.

Digamos que uma fita de DNA se rompa por causa da luz solar, quimioterapia ou um raio cósmico.

Se não for corrigida rapidamente, a célula pode se tornar cancerosa ou morrer. O que acontece primeiro?

No cenário rápido e complexo que permite que uma célula repare danos no DNA ou morra, a ATF3, ou Ativador do Fator de Transcrição 3, parece ser um verdadeiro primeiro respondedor, aumentando seus níveis e depois encontrando e se ligando a outra proteína, Tip60, o que acabará por ajudar atrair um enxame de outras proteínas para o local do dano.

▪️ Operações de Combate

Os vírus invadiram! As forças armadas entram em alerta máximo. O Salk Institute for Biological Studies descreve a enxurrada de atividades resultantes, porque todo organismo “deve proteger seu DNA a todo custo”.

Antes de entrar em pânico, os comandantes da célula precisam de inteligência. Se uma quebra de DNA coloca a célula em estresse, seja uma quebra natural, digamos de um raio cósmico, ou de um vírus, como um insurgente jogando uma granada? Um movimento em falso pode levar a baixas de fogo amigo.

Os pesquisadores explicam como a célula descobre se o dano ao DNA foi interno ou externo. Primeiro, o complexo MRN dá o sinal de “todas as mãos no convés”. Ele interrompe a replicação e outras operações da célula até que a quebra seja corrigida.

O interessante é que mesmo uma única interrupção transmite um sinal global através da célula, interrompendo a divisão e o crescimento celular”, diz O’Shea.

“Essa resposta impede a replicação para que a célula não passe por uma pausa .”

A resposta viral começa da mesma forma, mas não dá o alarme global.

Em vez disso, o alarme é localizado e sentinelas na área despacham os invasores. Há uma razão para isso.

“Se todos os vírus que chegam estimulassem uma resposta igualmente forte, aponta O’Shea, nossas células seriam pausadas com frequência, prejudicando nosso crescimento”. Mas quando a célula fica preocupada com o reparo de danos no DNA, os vírus podem se infiltrar.

Um vídeo no artigo aplica a metáfora das forças armadas:

Govind Shah: “As proteínas de reparo do DNA servem como guardas de segurança dentro do núcleo. Eles pegam o DNA do vírus e os escoltam para fora da célula.

Se uma célula sofrer uma grande quantidade de danos no DNA, esses guardas de segurança serão afastados do DNA viral e permitirão que o DNA viral se replique em altos níveis”.

Clodagh O’Shea: “Descobrimos que se você tem danos no DNA em seu próprio genoma, e o alarme dispara, na verdade isso recruta todas as forças: toda a polícia, guarda nacional – todo mundo está lá. Todas as forças estão lidando com seu próprio dano ao DNA, e não há mais nada para realmente ver ou desligar o vírus.”

Isso lhes deu uma ideia. Shah diz: “Então, por que não usar isso para matar células cancerígenas” com vírus projetados para entrar nas células tumorais? A resposta programada que eles descobriram fará com que a célula deixe os vírus entrarem enquanto está preocupada em consertar quebras de DNA.

“Se a célula não puder consertar a quebra do DNA, ela induzirá a morte celular – um mecanismo de autodestruição que ajuda a impedir que as células mutantes se repliquem (e, portanto, impede o crescimento do tumor)”.

▪️ Médicos

Estamos todos familiarizados com as imagens de helicópteros no campo de batalha entregando médicos para dar primeiros socorros aos feridos, ou transportando-os de avião para a estação de triagem ou hospital mais próximo. O núcleo da célula tem hospitais, diz um artigo da Biotechniques, e “ Uma ambulância molecular para DNA ” sabe como levar as vítimas ao pronto-socorro.

As quebras de fita dupla no DNA são uma fonte de estresse e às vezes a morte das células.

Mas as quebras podem ser corrigidas se encontrarem uma maneira de reparar os locais dentro da célula.

Em leveduras, um dos principais sítios de reparo reside no envelope nuclear, onde um conjunto de proteínas, incluindo o sub-complexo de poros nucleares Nup84, serve como uma espécie de hospital molecular.

O complexo de proteína motora cinesina-14, uma “ambulância de DNA”, move as pausas para locais de reparo, de acordo com um novo estudo da Nature Communications.

Pesquisadores da Universidade de Toronto acharam “muito surpreendente” que o motorista da ambulância seja a conhecida proteína motora cinesina-14 (veja nossa animação da cinesina em ação abaixo [áudio original em inglês]).

▪️ Funcionários do Hospital

Notícias do MD Anderson Cancer Center da Universidade do Texas apresentam alguns dos especialistas do hospital de reparo de DNA: fumarase, uma enzima metabólica; DNA-PK, uma proteína quinase; e enzimas de metilação de histonas que regulam o processo de reparo.

Esses médicos qualificados realizam cirurgias restauradoras para “quebras de fita dupla de DNA (DSBs)”, que “são a pior forma possível de mau funcionamento genético que pode causar câncer e resistência à terapia”.

▪️ Equipe de limpeza

As células investem muita energia em seus ribossomos, as organelas que traduzem o DNA. Os ribossomos são montados a partir de domínios de proteína e RNA. O que acontece com as sobras? Um item da Universidade de Heidelberg descreve máquinas moleculares que codificam os fragmentos em código de barras para serem entregues a um triturador em forma de barril chamado exossomo.

Embora não sejam descritos em termos militares, os agentes estão sob ordens estritas e obrigados a passar por postos de controle.

De acordo com o Prof. Hurt, a produção de ribossomos é um processo extremamente complexo que segue um esquema rígido com vários pontos de controle de qualidade .

As fábricas de proteínas são feitas de inúmeras proteínas ribossômicas (r-proteínas) e ácido ribonucleico ribossômico (rRNA).

Mais de 200 proteínas auxiliares, conhecidas como fatores de biogênese do ribossomo, são necessárias nas células eucarióticas para montar corretamente as proteínas-r e os diferentes rRNAs. Três do total de quatro rRNAs diferentes são fabricados a partir de um grande RNA precursor. Eles precisam ser “aparados” em pontos específicos durante o processo de fabricação, e as peças supérfluas são descartadas.

“Como esses processos são irreversíveis , é necessária uma verificação especial ”, explica Ed Hurt.

O número de pessoas das “forças armadas” envolvidas na defesa do DNA e no controle de qualidade das células é surpreendente. Está além de uma orquestra bem conduzida. É como uma operação militar, com protocolos rígidos, estrutura de comando hierárquica e especialistas treinados. Esses sistemas são orientados a objetivos: eles existem para proteger o genoma. Eles estão de plantão inspecionando componentes mesmo quando nada está errado. E quando as coisas dão errado, eles sabem exatamente o que fazer, como se estivessem bem treinados em seguir ordens.

Não estamos surpresos ao notar que esses artigos não dizem nada sobre evolução. Por quê? Porque todos sabemos pela nossa experiência que os fenómenos caracterizados por sistemas de comando e controle hierárquicos com procedimentos documentados e agentes qualificados são sempre concebidos de forma inteligente.

Este artigo foi publicado originalmente em 2015.

Sexta-feira Fóssil: Baleias Ambulantes E Por Que Todas As Críticas Ao Problema Do Tempo de Espera Falham

Por Günter Bechly | Evolution News
30 de setembro de 2022, 9h46

Esta sexta-feira dos fósseis apresenta os esqueletos reconstruídos de Pakicetus (abaixo) e Ambulocetus (acima), que são as chamadas “baleias ambulantes” do Eoceno do Paquistão.

Esses fósseis são frequentemente celebrados como elos perdidos e uma história de sucesso para o darwinismo. No entanto, eles de fato criam um problema fatal para o neodarwinismo, que é conhecido como o problema do tempo de espera.

O problema geral é que a janela de tempo estabelecida pelo registro fóssil para a transição de “baleias ambulantes” para baleias totalmente marinhas é muito curta para acomodar os tempos de espera para a origem e disseminação das mudanças genéticas necessárias, com base em a estrutura matemática padrão da genética de populações. Este problema foi elaborado de forma popular em várias publicações da comunidade do DI (Meyer 2013, Evolution News 2016, LeMaster 2018 ), e no documentário da Illustra Media Living Waters.

▪️ Um projeto de pesquisa multidisciplinar em andamento

O problema do tempo de espera é objeto de um projeto de pesquisa multidisciplinar em andamento financiado pelo Discovery Institute.

Já publicamos o trabalho de base teórica em dois artigos revisados por pares nos principais meios de comunicação (Hössjer et al. 2018, 2021). Uma aplicação sobre o exemplo das origens das baleias é apresentada por Bechly et al. (em preparação).

O problema do tempo de espera tem sido alvo de críticas desdenhosas por porta-vozes anti-DI (por exemplo, Moran 2016, Rasmussen 2021, Stern-Cardinale 2022, Farina 2022), que alegaram que é falacioso e não desafia o darwinismo.

Abordaremos essa crítica detalhadamente em nosso próximo artigo técnico, mas deixe-me aqui refutar brevemente os pontos principais para um público leigo, para que você esteja preparado para eventuais debates.

▪️ Revendo os pontos principais

1.) Os críticos muitas vezes sugerem explicitamente ou implicitamente que o problema do tempo de espera é um pseudoproblema inventado por criacionistas maus e estúpidos.

Este é um argumento tolo e embaraçosamente incompetente, que apenas mostra que esses críticos não apenas falharam em entender o problema, mas também parecem estar totalmente inconscientes de que o problema do tempo de espera tem uma longa história e tem sido muito discutido na ciência convencional (especialmente genética de populações). Ele ainda desempenha um papel importante na pesquisa do câncer.

Eles deveriam conversar com o professor de Harvard Martin Nowak, que é biólogo evolucionista e especialista no problema do tempo de espera. Aqui estão apenas algumas referências de cientistas renomados que publicam sobre essa “coisa maluca” como Farina (2022) a chama:

Bodmer (1970), Karlin (1973), Christiansen et al. (1998), Schweinsberg (2008), Durrett et al. (2009), Behrens et al. (2012) e Chatterjee et al. (2014).

Não foi antes de Behe & Snoke (2004, 2005) e Behe (2007, 2009) que o problema do tempo de espera foi reconhecido como argumento para o design inteligente. Durrett & Schmidt (2008) tentaram refutar Behe, mas chegaram a um tempo de espera proibitivo de 216 milhões de anos para uma única mutação coordenada na evolução humana, enquanto apenas cerca de 6 milhões de anos estão disponíveis desde a origem da linhagem humana de um ancestral comum com chimpanzés. Behe chegou às 10 15anos usando dados empíricos sobre um tempo de espera real para uma mutação coordenada que transmitiu resistência à droga cloroquina na malária.

Ele simplesmente transpôs essas descobertas empíricas em humanos, considerando seu tamanho populacional muito menor e tempo de geração muito maior. O resultado de Durrett & Schmidt foi baseado em um modelo matemático, que obviamente deve fazer algumas simplificações que podem introduzir erros. Quando tais cálculos de modelo entram em conflito com dados empíricos concretos, devemos confiar nos dados empíricos como se estivessem mais próximos da verdade. De qualquer forma, ambos os números são proibitivos e refutam a viabilidade de um mecanismo darwiniano de macroevolução.

2.) A maioria dos críticos considerou a objeção mais poderosa como sendo a “falácia do atirador de elite do Texas“. Eles alegaram que a natureza não busca mutações específicas como alvo, mas é totalmente aleatória. Esse argumento falha porque pressupõe a existência de muitos alvos, o que é contrariado pela raridade de função no espaço de busca de proteínas e pelo fenômeno comum de convergência.

O argumento também falha em reconhecer que a vida não pode permitir períodos de má adaptação apenas para descer um pico local da paisagem de aptidão para explorar outros. Em vez disso, a vida precisa se adaptar ainda mais ao seu pico de aptidão local, o que requer soluções específicas para problemas específicos. Não é como qualquer mutação benéfica poderia fazer. Uma baleia-tronco não teria utilidade para uma mutação que seria benéfica para uma ave-tronco, como melhorar a pneumática esquelética.

3.) Alguns críticos não entenderam o conceito de mutações coordenadas e até o chamaram de sem sentido.

Eles sugeriram que cada mutação individual pode ser selecionada. Isso mostra que eles não entenderam o ponto simples de que em mutações coordenadas cada mutação individual é neutra e, portanto, em princípio, não pode ser selecionada.

Apenas a combinação de mutações coordenadas tem um valor de seleção, que é o ponto principal, e a razão pela qual elas foram chamadas de “mutações coordenadas” em primeiro lugar.

4.) Alguns críticos afirmam que o problema do tempo de espera implica que as mutações devem ocorrer em uma sequência específica. Isso é simplesmente falso e talvez baseado em um mal-entendido do termo técnico “gene coordenado”. O fato é que nenhum proponente de DI jamais alegou que o problema do tempo de espera se aplica apenas a sequências particulares de mutações.

Para qualquer conjunto de parâmetros razoáveis, os tempos de espera para mutações coordenadas (ou seja, mutações que precisam ocorrer juntas para ter um valor de seleção) serão proibitivos, independentemente da ordem dessas mutações. O que é verdade é que o problema do tempo de espera fica ainda pior quando essas mutações também precisam ocorrer em uma sequência específica.

5.) Os críticos também alegaram que o problema do tempo de espera ignora a recombinação, que de acordo com Farina (2022) “desconta sem fundamento o profundo benefício evolutivo” e está “acelerando dramaticamente o acúmulo de mutações benéficas”. Isso mostra quão ignorantes são os críticos da literatura técnica atual, pois a influência da recombinação do problema do tempo de espera foi estudada por Christiansen et al. (1998), que mostraram que:

“A recombinação diminui o tempo de espera até que uma nova combinação genotípica apareça pela primeira vez, mas o efeito é pequeno [grifo meu] em comparação com a taxa de mutação e o tamanho da população”.

Em nossos artigos (Hössjer et al. 2018, 2021, Bechly et ai. na preparação) mostramos que a recombinação não afeta o tempo de espera sob suposições realistas para parâmetros como taxas de mutação e tamanhos de população.

6.) Os críticos também afirmam que o problema é meramente teórico, mas não realista em termos biológicos, por exemplo, porque não se aplica a exemplos concretos ou porque mutações coordenadas não são necessárias. Abordaremos esta última afirmação muito detalhadamente em nosso próximo artigo, onde aplicamos a estrutura teórica ao exemplo concreto das origens das baleias.

Também mostraremos, com base em dados evo-devo convencionais, que realmente são necessárias mutações coordenadas. Isso também é sugerido pelo fato de que mesmo caracteres simples como a cor da pele se mostraram altamente poligênicos, portanto controlados por muitos genes diferentes. A propósito: O problema do tempo de espera também foi aplicado ao exemplo concreto das origens humanas por Durrett & Schmidt (2008) e Sanford et al. (2015) com resultados proibitivos para a evolução darwiniana.

▪️ E finalmente

Por último, mas não menos importante, alguns críticos ficaram intrigados com a forma como os artigos dos proponentes do DI sobre o problema do tempo de espera poderiam de alguma forma chegar a periódicos revisados por pares, como o prestigioso Journal of Theoretical Biology. Bem, isso é fácil: porque é uma boa ciência revisada por pares e a censura usual da máfia darwinista às vezes falha em sabotar a publicação de pesquisas inconvenientes, mesmo que elas sempre se esforcem muito.

É o cúmulo da hipocrisia quando as mesmas pessoas se voltam e afirmam que os proponentes do DI não publicam suas coisas na literatura revisada por pares. Os darwinistas, como é bem conhecido, adoram jogar o jogo “Cara eu ganho, rabo você perde”.


Referências

  • Behrens S, Nicaud C & Nicodéme P 2012. An automaton approach for waiting times in DNA evolution. Journal of Computational Biology 19(5), 550–562. DOI: https://doi.org/10.1089/cmb.2011.0218
  • Behe MJ 2007. The Edge of Evolution. Free Press, New York (NY), 336 pp.
  • Behe M 2009. Waiting Longer for Two Mutations. Genetics 181(2), 819–820. DOI: https://doi.org/10.1534/genetics.108.098905
  • Behe MJ & Snoke DW 2004. Simulating evolution by gene duplication of protein features that require multiple amino acid residues. Protein Science 13(10), 2651–2664. DOI: https://doi.org/10.1110/ps.04802904
  • Behe MJ & Snoke DW 2005. A response to Michael Lynch. Protein Science 14(9), 2226–2227. DOI: https://doi.org/10.1110/ps.051674105
  • Bodmer WF 1970. The evolutionary significance of recombination in prokaryotes. Symposium of the Society for General Microbiology 20, 279–294.
  • Chatterjee K, Pavlogiannis A, Adlam B & Nowak MA 2014. The time scale of evolutionary innovation. PLoS Computional Biology 10(9):d1003818, 1–7. DOI: https://doi.org/10.1371/journal.pcbi.1003818
  • Christiansen FB, Otto SP, Bergman A & Feldman MW 1998. Waiting with and without Recombination: The Time to Production of a Double Mutant. Theoretical Population Biology53(3), 199–215. DOI: https://doi.org/10.1006/tpbi.1997.1358
  • Durrett R & Schmidt D 2008. Waiting for two mutations: with applications to regulatory sequence evolution and the limits of Darwinian evolution. Genetics 180(3), 1501–1509. DOI: https://doi.org/10.1534/genetics.107.082610
  • Durrett R, Schmidt D & Schweinsberg J 2009. A waiting time problem arising from the study of multi-stage carcinogenesis. Annals of Applied Probability 19(2), 676–718. DOI: https://doi.org/10.1214/08-AAP559
  • Farina D 2022. Exposing the Discovery Institute Part 2: Stephen Meyer. Professor Dave Explains May 13, 2022. https://youtu.be/Akv0TZI985U
  • Hössjer O, Bechly G & Gauger A 2018. Phase-type distribution approximations of the waiting time until coordinated mutations get fixed in a population. Chapter 12, pp. 245–313 in: Silvestrov S, Malyarenko A & Rancic M (eds). Stochastic Processes and Algebraic Structures – From Theory Towards Applications. Volume 1: Stochastic Processes and Applications. Springer Proceedings in Mathematics and Statistics 271. DOI: 10.1007/978-3-030-02825-1_12
  • Hössjer O, Bechly G & Gauger A 2021. On the waiting time until coordinated mutations get fixed in regulatory sequences. Journal of Theoretical Biology 524:110657, 1–37. DOI: https://doi.org/10.1016/j.jtbi.2021.110657
  • Karlin S 1973. Sex and infinity: A mathematical analysis of the advantages and disadvantages of genetic recombination. pp. 155–194 in: Bartlett MS & Hiorns RW (eds). The Mathematical Theory of the Dynamics of Biological Populations. Academic Press, New York (NY), xii+347 pp.
  • LeMaster JC 2018. Evolution’s waiting-time problem and suggested ways to overcome it—A critical survey. BIO-Complexity 2018(2), 1–9. DOI: https://doi.org/10.5048/BIO-C.2018.2
  • Meyer SC 2013a. Darwin’s Doubt. HarperOne, New York (NY), viii+498 pp.
  • Moran L 2016. Targets, arrows, and the lottery fallacy. Sandwalk Jan. 14, 2016. https://sandwalk.blogspot.com/2016/01/targets-arrows-and-lottery-fallacy.html
  • Rasmussen MN 2021. Waiting Time Problem” and imaginary hurdles for evolution. Pandas Thumb June 12, 2021. https://pandasthumb.org/archives/2021/06/ID-and-imaginary-hurdles.html
  • Sanford J, Brewer W, Smith F & Baumgardner J 2015. The waiting time problem in a model hominin population. Theoretical Biology and Medical Modelling 12:18, 1–18. DOI: https://doi.org/10.1186/s12976-015-0016-z
  • Schweinsberg J 2008. The waiting time for m mutations. Electronic Journal of Probability13, 1442–1478. DOI: https://doi.org/10.1214/EJP.v13-540
  • Stern-Cardinale D 2022. Creation Myth: The “Waiting Time Problem” Creation MythsFebruary 15, 2022. https://youtu.be/F748itCI_es

DNA É Gerenciado Como A Corda Dos Alpinistas Para Ajudar A Manter Emaranhados Afastados

Por Universidade de Edimburgo | Science Daily

22 de abril de 2019


Um processo que as células usam para desvendar filamentos de DNA nodosos – assemelhando-se a um método usado para controlar cordas de escalada – foi descoberto por cientistas.

As descobertas ajudam a explicar como cerca de 2 metros de DNA podem ser empacotados Ordenadamente em cada uma de nossas células, em um espaço que tem aproximadamente a largura de um fio de cabelo.

Os cientistas identificaram dois conjuntos de proteínas nas células que trabalham juntas PARA manter os fios soltos, evitando emaranhados que dificultariam processos biológicos vitais.

Essas proteínas são encontradas em muitos organismos, e os cientistas acreditam que seu papel no GERENCIAMENTO do DNA pode ser comum em toda a natureza.

Uma família de proteínas – conhecida como SMC – atua como um dispositivo de segurança usado por alpinistas, que passa cordas por uma série de laços.

Descobriu-se que essas proteínas funcionam ao lado de outro conjunto, conhecido como TopoII, que anteriormente pensava-se ser para ajudar a RESOLVER emaranhados, mas de uma maneira que não era bem compreendida.

Pesquisadores das Universidades de Edimburgo e Pádua, na Itália, estudaram o processo criando modelos de computador de DNA com nós e links.

Eles descobriram que o SMC age como um segurança, deslizando para frente e para trás para aumentar ou reduzir as alças em segmentos ligados de DNA. Os nós são primeiro espremidos e comprimidos pelo SMC e, posteriormente, são facilmente DETECTADOS e RESOLVIDOS pelo TopoII.

Seu estudo é o primeiro a explicar como as duas famílias de proteínas MANTÊM o DNA livre de emaranhados sob as condições confinadas e lotadas da célula.

A pesquisa, publicada na revista Proceedings of the National Academy of Science, foi apoiada pelo Conselho Europeu de Pesquisa.

Davide Michieletto, da Escola de Física e Astronomia da Universidade de Edimburgo, que liderou o estudo, disse: “Pode-se esperar que os longos fios de DNA fiquem HORRIVELMENTE emaranhados – um pouco como tirar fones de ouvido com nós do bolso. Mas, em vez disso, a natureza CRIOU essas MÁQUINAS INCRÍVEIS para RESOLVER esse PROBLEMA de Maneira Notável, aparentemente em muitas espécies.”


[Ênfase adicionada]


Referência do Jornal:

  1. Enzo Orlandini, Davide Marenduzzo, Davide Michieletto. Synergy of topoisomerase and structural-maintenance-of-chromosomes proteins creates a universal pathway to simplify genome topology. Proceedings of the National Academy of Sciences, 2019; 201815394 DOI: 10.1073/pnas.1815394116

[Obs: o artigo original não possui imagem didática, ficou por conta desse blog]

Stuart Burgess Informa O Evolucionista Nathan Lents Sobre O Gênio Do Design Do Tornozelo E Do Pulso

Por David Klinghoffer | Evolution News

12 de setembro de 2022, 6h50

[Nota desse blog: o vídeo desse mesmo artigo está com o áudio original em inglês]

Quando engenheiros educam evolucionistas sobre onde sua teoria falha, os resultados podem ser esclarecedores e divertidos. Às vezes são espetaculares. É o caso do distinto engenheiro mecânico Stuart Burgess e sua apresentação na recente Conferência de Westminster sobre Ciência e Fé.

Burgess aborda algumas alegações do cientista forense Nathan Lents no livro de 2018 deste último, Human Errors: A Panorama of Our Glitches, from Pointless Bones to Broken Genes. Como diz Burgess, “deveria ser chamado de Erros da Quaresma”.

O professor Lents é um proponente da hipótese do “design não inteligente”.

Ele olha para as maravilhas da engenharia como o pulso e o tornozelo humanos e vê apenas “erros”, “ossos sem sentido”, “erros anatômicos”. Burgess estudou essas maravilhas da biologia mais de perto do que Lents e explica em detalhes por que elas são, de fato, soluções “engenhosas” para problemas de engenharia que deixam para trás a genialidade dos engenheiros humanos. Burgess está simplesmente pegando fogo. Você tem que assistir isso:

▪️ Uma certa generosidade

Lents é como o colega evolucionista Jerry Coyne no sentido de que há uma certa generosidade nele: Coyne e Lent são tão profusos em seus erros que ambos forneceram anos de material para os céticos de Darwin trabalharem.

Por exemplo, em seu livro, Lents escreve: “Os humanos têm ossos demais”. Sobre o pulso, ele diz que “é muito mais complicado do que precisa ser… A pequena área que é apenas o próprio pulso tem oito ossos totalmente formados e distintos enfiados lá como uma pilha de pedras – o que é sobre o quão útil eles são para qualquer um”.

Burgess diz exatamente quais funções dependem de cada uma dessas “pedras” inúteis.

O design é extremamente inteligente. E o mesmo vale para o tornozelo.

Quando você chegar ao final da apresentação, não terá nenhuma dúvida de que, nesses casos – que podem substituir muitos outros – os darwinistas foram levados por sua filosofia a julgar grosseiramente mal a anatomia humana. Lents, em seu fervor ideológico, “ignora a pesquisa biomecânica”, “ignora a pesquisa em engenharia”.

Agora aqui está uma pergunta interessante. Lents gosta de frequentar a comunidade online Peaceful Science do biólogo computacional Joshua Swamidass.

Swamidass é outro crítico do DI, embora seja cristão e não ateu como a Quaresma. Será que o pessoal de lá vai assistir ao vídeo e estimular seu amigo Nathan Lents a responder ao caso excepcional que faz com que Nathan não saiba do que está falando? Vamos descobrir.

A Deusa de Darwin: Seleção Natural Como “Substituto Divino”

Neil Thomas | Evolution News

Evolução Com e Sem Múltiplas Mudanças Simultâneas

William A. Dembski | Evolution News

Mais Sobre Máquinas Auto-Replicantes

Granville Sewell | Evolution News

27 de junho de 2022, 12hs39min

Em um post no início deste mês, descrevi Three Realities Chance Can’t Explain That Intelligent Design Can.

O post mostrou alguns dos problemas com explicações materialistas sobre como as quatro forças fundamentais e não inteligentes da física sozinhas poderiam ter reorganizado as partículas fundamentais da física na Terra em computadores, textos científicos e telefones inteligentes. Fiz uma comparação com máquinas auto-replicantes:

[Eu]imagino que de alguma forma conseguimos projetar, digamos, uma frota de carros com fábricas de construção de automóveis totalmente automatizadas, capazes de produzir carros novos – e não apenas carros novos normais, mas carros novos com fábricas de construção de automóveis totalmente automatizadas dentro deles. Quem poderia acreditar seriamente que, se deixássemos esses carros sozinhos por muito tempo, o acúmulo de erros de duplicação cometidos à medida que se reproduzissem resultaria em outra coisa que não a devolução e, eventualmente, poderia até ser organizado por forças seletivas em modelos de automóveis mais avançados?

▪️ Um olhar mais cuidadoso

Mas eu não acho que isso deixa suficientemente claro o quão difícil seria criar carros verdadeiramente auto-replicantes. Então vamos ver isso com mais cuidado. Sabemos como construir um carro Ford Modelo T simples. Agora vamos construir uma fábrica dentro deste carro, para que ele possa produzir carros Modelo T automaticamente.

Chamaremos o novo carro, com a fábrica do Modelo T dentro, de “Modelo U”.

Um carro com uma fábrica de automóveis inteira dentro, que nunca requer qualquer intervenção humana, está muito além da nossa tecnologia atual, mas não parece impossível que as gerações futuras possam construir um Modelo U.

É claro que os carros Modelo U não são auto-replicadores, porque eles só podem construir modelos T simples.

Então, vamos adicionar mais tecnologia a este carro para que ele possa construir o Modelo U, ou seja, o Modelo T com fábricas de construção de automóveis dentro. Este novo carro “Modelo V”, com uma fábrica totalmente automatizada no interior capaz de produzir os Modelos U (que estão muito além da nossa tecnologia atual), seria inimaginavelmente complexo.

Mas este novo Model V agora é um auto-replicador? Não, porque apenas constrói o Modelo U muito mais simples. As espécies do Modelo V serão extintas após duas gerações, porque seus filhos serão Modelo U e seus netos serão Modelo T inférteis!

▪️ Então de volta ao trabalho

Cada vez que adicionamos tecnologia a esse carro, para aproximá-lo da meta de reprodução, apenas movemos as traves, porque agora temos um carro mais complicado de reproduzir.

Parece que os novos modelos cresceriam exponencialmente em complexidade, e começamos a nos perguntar se é mesmo teoricamente possível criar máquinas auto-replicantes.

No entanto, vemos essas máquinas ao nosso redor no mundo dos vivos. Você e eu somos dois exemplos. E aqui ignoramos a questão muito difícil de onde esses carros obtêm os metais, a borracha e outras matérias-primas de que precisam para abastecer suas fábricas.

É claro que os materialistas dirão que a evolução não criou diretamente máquinas auto-replicantes avançadas.

Em vez disso, levou apenas um primeiro auto-replicador simples e gradualmente evoluiu para auto-replicadores cada vez mais avançados.

Mas, além do fato de que os engenheiros humanos ainda não têm ideia de como criar qualquer máquina auto-replicante “simples”, o ponto é que os evolucionistas estão atribuindo a causas naturais a capacidade de criar coisas muito mais avançadas do que carros auto-replicantes (por exemplo, humanos auto-replicantes), que parecem impossíveis, ou virtualmente impossíveis, de projetar.

Eu admiti em meu post anterior (e em meu vídeo A Summary of the Evidence for Intelligent Design ”) que engenheiros humanos podem algum dia construir uma máquina auto-replicante. Mas mesmo que o façam, isso não mostrará que a vida poderia ter surgido por meio de processos naturais. Só terá mostrado que poderia ter surgido através do design.

▪️ Design por erros de duplicação

De qualquer forma, como escrevi lá, mesmo que pudéssemos criar carros auto-replicantes, quem poderia acreditar seriamente que os erros de duplicação cometidos à medida que se reproduziam poderiam levar a grandes avanços? (E até mesmo máquinas inteligentes e conscientes eventualmente.) Certamente uma máquina inimaginavelmente complexa como um carro auto-replicante só poderia ser danificada por tais erros, mesmo quando filtrada pela seleção natural.

Estamos tão acostumados a ver animais e plantas se reproduzirem com degradação mínima de geração em geração que não percebemos o quão surpreendente isso realmente é.

Nós realmente não temos ideia de como os seres vivos são capazes de passar suas atuais estruturas complexas para seus descendentes, muito menos como eles poderiam evoluir estruturas ainda mais complexas.

Quando os matemáticos têm uma prova simples e clara de um teorema e um contra-argumento longo e complicado, cheio de suposições não comprovadas e argumentos questionáveis, aceitamos a prova simples, mesmo antes de encontrarmos os erros no contra-argumento complicado.

O argumento para o design inteligente não poderia ser mais simples ou mais claro: forças não inteligentes sozinhas não podem reorganizar átomos em computadores e aviões e usinas nucleares e telefones inteligentes, e qualquer tentativa de explicar como isso pode falhar em algum lugar porque obviamente não pode.

Como muitos cientistas não ficam impressionados com argumentos tão simples, meu post foi uma tentativa de apontar alguns dos erros na explicação de três etapas do materialista sobre como eles poderiam. E dizer que todas as três etapas estão cheias de suposições não comprovadas e argumentos questionáveis é um eufemismo.

No mínimo, deve ficar claro agora que, embora a ciência possa explicar tudo o que aconteceu em outros planetas apelando apenas para as forças não inteligentes da natureza, tentar explicar a origem e a evolução da vida na Terra é uma tarefa muito mais difícil e o design inteligente deve pelo menos ser contado entre as opiniões que podem ser ouvidas.

De fato, isso já está começando a acontecer.