Micro RNA – As primeiras previsões da evolução.

Por Darwins Predictions – Cornelius Hunter

[Obs: Texto adaptado a partir do original – O texto original não tem imagens]

 

MiRNA_JRH.jpg

Os genes possuem informações que são usadas para construir moléculas de proteína e RNA que fazem várias tarefas na célula. Um gene é copiado em um processo conhecido como transcrição. No caso de um gene que codifica a proteína, a transcrição é editada e convertida em uma proteína em um processo conhecido como tradução. Tudo isso é guiado por elaborados processos regulatórios que ocorrem antes, durante e após essa sequência de transcrição, edição e tradução.

Por exemplo, trechos de nossos DNA, que foram considerados de pouca utilidade, têm um papel regulador importante. Este DNA é transcrito em vertentes de cerca de 20 nucleótidos, conhecido como micro RNA. Esses pequenos trechos se ligam e interferem com os transcritos de RNA – cópias de genes de DNA – quando a produção do gene precisa ser retardada.

Os Micro RNAs também podem ajudar a modificar o processo de tradução, estimulando o dimensionamento de quadros ribossômico programado. Dois microRNAs se juntam à transcrição de RNA resultando em uma forma de estrutura de RNA de pseudoknot, ou triplex, que faz com que o quadro de leitura ocorra. (Belew)

Os MicroRNAs não vêm apenas do DNA de uma célula. Os MicroRNAs também podem ser importados de células próximas, permitindo assim que as células se comuniquem e se influenciem mutuamente. Isso ajuda a explicar como as células podem se diferenciar em um embrião crescente de acordo com sua posição dentro do embrião. (Carlsbecker)

Os Micro RNAs também podem vir dos alimentos que comemos. Em outras palavras, o alimento não contém apenas carboidratos, proteínas, gorduras, minerais, vitaminas, etc; também contém informações – na forma desses fragmentos regulatórios de micro RNA – que regulam a produção de genes. (Zhang)

Enquanto os micro RNAs regulam a produção de proteínas, os próprios micro RNAs também precisam ser regulados. Portanto, existe uma rede de proteínas que controlam rigorosamente a produção de micro RNA, bem como a remoção deles. “Apenas a pura existência desses reguladores exóticos“, explicou um cientista, “sugere que nossa compreensão sobre as coisas mais básicas – como a forma como uma célula se liga e desliga – é incrivelmente ingênua.” (Hayden)

Duas predições básicas que a teoria evolutiva faz em relação aos micro RNAs são que (i) como toda a biologia, surgiram gradualmente através de variações biológicas ocorrendo aleatoriamente (como mutações) e (ii) como conseqüência dessa origem evolutiva, os micro RNAs devem formar um padrão que se aproxima do padrão de descendência comum da evolução. A ciência atual falsificou essas duas previsões.

É improvável que os micro RNAs tenham evoluído gradualmente através de mutações aleatórias, pois são necessárias muitas mutações. Sem a existência prévia de genes e o processo de síntese proteica, os micro RNAs seriam inúteis. E sem a existência prévia de seus processos regulatórios, os micro RNAs causariam estragos.

Dado o fracasso da primeira previsão, não é surpreendente que a segunda previsão também tenha falhado. As sequências genéticas de micro RNA não se enquadram no padrão de descendência comum esperado. Ou seja, quando comparados entre diferentes espécies, os micro RNAs não se alinham com a árvore evolutiva. Como um cientista explicou: “Olhei para milhares de genes de micro RNA e não consigo encontrar um único exemplo que apoie a árvore [evolutiva] tradicional“. (Dolgin)

Embora existam dúvidas sobre esses novos dados filogenéticos, “o que sabemos nesta fase“, explicou outro evolucionista, “é que temos uma incongruência muito séria“. Em outras palavras, diferentes tipos de dados relatam árvores evolutivas muito diferentes. O conflito é muito maior que as variações estatísticas normais.

 

treeoflifefo.jpg

 

Tem que existir“, acrescentou outro evolucionista, “outras explicações“. Uma explicação é que os micro RNAs evoluem de maneira inesperada. Outra é que a árvore evolutiva tradicional está errada. Ou os evolucionistas podem considerar outras explicações. Mas, em qualquer caso que seja, os micro RNAs são mais um exemplo de evidências que não se encaixam nas expectativas evolutivas. Mais uma vez, a teoria precisará ser modificada de forma complexa para se adequar às novas descobertas.

Entretanto, os cientistas estão descobrindo que a imposição do padrão de descendência comum, onde os micro RNAs devem ser conservados entre as espécies, está dificultando a pesquisa científica:

Esses resultados destacam as limitações que podem resultar da imposição de que os miRNAs sejam conservados nos organismos. Esses requisitos, por sua vez, resultarão em nossos miRNAs de organismos genuínos ausentes e talvez possam explicar por que muitos destes miRNAs novos não foram previamente identificados. (Londin)

A teoria evolutiva vem limitando a ciência. Embora o padrão de descendência comum tenha sido o guia desde os estudos iniciais do micro RNA, esses pesquisadores “se libertaram” dessa restrição, e isso está levando a um bom progresso científico:

Nos primeiros dias de campo do miRNA, houve uma ênfase na identificação de miRNAs que são conservados em organismos… No entanto, miRNAs de espécies específicas também foram descritos e caracterizados como sendo miRNAs que estão presentes apenas em uma ou poucas espécies do mesmo gênero. Portanto, aplicar um requisito de conservação de organismos durante as pesquisas com miRNA é uma barreira que limita o número de miRNAs potenciais que podem ser descobertos, deixando organismos e linhagens específicas de miRNAs ocultos. Em nosso esforço para caracterizar ainda mais o repertório de miRNA humano, nos desprendemos do requisito de conservação… Esses achados sugerem fortemente, a possibilidade de uma ampla gama de miRNA-ome de espécies específicas que ainda não foi caracterizado. (Londin)

As duas predições do micro RNA foram falsificadas e, de forma surpreendente, a hipótese evolutiva prejudicou a pesquisa científica de como os micro RNAs funcionam.

 


 

Referencias

Belew, Ashton T., et. al. 2014. “Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway.” Nature 512:265-9.

Carlsbecker, Annelie, et. al. 2010. “Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate.” Nature 465:316-21.

Dolgin, Elie. 2012. “Phylogeny: Rewriting evolution.” Nature 486:460-2.

Hayden, Erika Check. 2010. “Human genome at ten: Life is complicated.” Nature464:664-7.

Londin, Eric, et. al. 2015. “Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs.” Proc Natl Acad Sci USA112:E1106-15.

Zhang, L., et. al. 2012. “Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA.” Cell Research 22:107-26.

O Antigo Mistério Biológico Sobre A Organização Do DNA Agora Resolvido.

Por Science Daily 

[***Obs: Título e texto adaptados a partir do original – Imagem do SD]

Esticado, o DNA de todas as células do nosso corpo chegaria a Plutão. Então, como cada célula minúscula possui um comprimento de DNA de dois metros em seu núcleo, sendo o seu total de apenas um milésimo de milímetro? A resposta a este enigma biológico assustador, é fundamental para entender como a organização tridimensional do DNA no núcleo influencia nossa biologia, entender como nosso genoma orquestra nossa atividade celular, e como os genes são passados de pais para filhos.

170727141510_1_540x360.jpg

Agora, cientistas do Instituto Salk e da Universidade da Califórnia, em San Diego, forneceram pela primeira vez uma visão sem precedentes da estrutura 3D da cromatina humana – a combinação de DNA e proteínas – no núcleo das células humanas vivas.

No estudo do tour de force, descrito no Science em 27 de julho de 2017, os pesquisadores do Salk identificaram um novo corante de DNA que, quando emparelhado com microscopia avançada; uma tecnologia combinada chamada ChromEMT, permite uma visualização altamente detalhada da estrutura da cromatina nas células durante os estágios de repouso e miótico (divisão). Ao revelar a estrutura da cromatina nuclear em células vivas, o trabalho pode ajudar a reescrever o modelo de organização livro-texto do DNA e até mesmo mudar a forma como abordamos tratamentos para doenças.

Um dos desafios mais intratáveis na biologia é descobrir a estrutura de DNA de ordem superior no núcleo e como isso está ligado às suas funções no genoma“, diz o professor associado de Salk, Clodagh O’Shea, escritor no Howard Hughes Medical Institute Faculty e autor sênior do artigo. “É de grande importância, pois esta é uma estrutura de DNA biologicamente relevante, que determina a função e a atividade dos genes“.

Desde que Francis Crick e James Watson determinaram a estrutura primária do DNA como uma dupla hélice, os cientistas se perguntaram como o DNA é organizado para permitir que todo o seu comprimento se empilhe no núcleo, de modo que a máquina de cópia da célula possa acessá-lo em diferentes pontos do ciclo de atividades da célula. Os raios-X e a microscopia mostraram que o nível primário da organização da cromatina, envolve 147 bases de enrolamento de DNA em torno de proteínas para formar partículas de aproximadamente 11 nanômetros (nm) em diâmetro, chamadas nucleossomos. Acredita-se que esses nucleossomos, como “grânulos em um fio “, dobram-se em fibras discretas de diâmetro crescente (30, 120, 320 nm, etc.), até formar cromossomos. O problema é que ninguém viu cromatina nessas dimensões discretas intermediárias, em células que não são que quebradas e que seu DNA foi processado rigorosamente, de modo que, o modelo livro-texto da organização hierárquica de ordem superior da cromatina em células intactas, permaneceu sem verificação.

Para superar o problema da visualização da cromatina em um núcleo intacto, A equipe de O’Shea selecionou uma série de corantes candidatos, eventualmente encontrando um que poderia ser precisamente manipulado com luz para se submeter a uma complexa série de reações químicas que essencialmente “pintariam” a superfície do DNA com um metal para que sua estrutura local e polímero 3D A organização pode ser imaginada em uma célula viva. A equipe fez parceria com a Universidade da Califórnia, San Diego, professor e especialista em microscopia Mark Ellisman, um dos co-autores do papel, para explorar uma forma avançada de microscopia eletrônica que inclina amostras em um feixe de elétrons, permitindo que sua estrutura 3D seja reconstruída. A equipe de O’Shea chamou a técnica, que combina seu cromatógrafo com tomografia eletrônica, ChromEMT.

A equipe usou ChromEMT para imagem e medição da cromatina em células humanas em repouso e durante a divisão celular (mitose), quando o DNA é compactado em sua forma mais densa – os 23 pares de cromossomos mitóticos que são a imagem icônica do genoma humano. Surpreendentemente, eles não viram nenhuma das estruturas de ordem superior do modelo livro-texto em nenhum lugar.

O modelo livro-texto é uma ilustração de desenho animado por um motivo“, diz Horng Ou, um pesquisador associado do Salk e o primeiro autor do paper. “A cromatina que foi extraída do núcleo e submetida a processamento in vitro – em tubos de ensaio – pode não parecer cromatina em uma célula intacta, por isso é tremendamente importante poder vê-la in vivo“.

O que a equipe de O’Shea viu, tanto em células em repouso quanto em divisão, era a cromatina, cujas “esferas em uma corda” não formaram nenhuma estrutura de ordem superior, como os 30 ou 120 ou 320 nanômetros teorizados. Em vez disso, formou uma cadeia semi-flexível, que eles meticulosamente mediram como variando continuamente ao longo do seu comprimento entre apenas 5 e 24 nanômetros, dobrando e flexionando para atingir diferentes níveis de compactação. Isso sugere que é a densidade da embalagem da cromatina, e não uma estrutura de ordem superior, que determina quais áreas do genoma estão ativas e que são suprimidas.

Com suas reconstruções em microscopia 3D, a equipe conseguiu mover-se através de um volume de torções de cromatina de 250 nm x 1000 nm x 1000 nm, e vislumbra como uma molécula grande como a RNA polimerase, que transcreve DNA (cópias), pode ser direcionada pela densidade variável da embalagem da cromatina, como uma aeronave de vídeo-games que voa através de uma série de cânions, a um ponto específico do genoma. Além de aumentar o modelo de livros didáticos da organização do DNA, os resultados da equipe sugerem que controlar o acesso à cromatina pode ser uma abordagem útil para prevenir, diagnosticar e tratar doenças como o câncer.

Mostramos que a cromatina não precisa formar estruturas discretas de ordem superior para se adequarem ao núcleo“, acrescenta O’Shea. “É a densidade do empacotamento que pode mudar e limitar a acessibilidade da cromatina, proporcionando uma base estrutural local e global através da qual diferentes combinações de sequências de DNA, variações e modificações nucleossômicas podem ser integradas no núcleo para afinar requintadamente a atividade funcional e a acessibilidade de nossos genomas.

O trabalho futuro examinará se a estrutura da cromatina é universal entre os tipos celulares ou mesmo entre os organismos.

 


 

Journal Reference:

  1. Horng D. Ou, Sébastien Phan, Thomas J. Deerinck, Andrea Thor, Mark H. Ellisman, Clodagh C. O’Shea. ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cellsScience, 2017; 357 (6349): eaag0025 DOI: 10.1126/science.aag0025