A natureza não dá saltos

Por Cornelius Hunter | DarwinsPredictions

A evolução é um processo. Ocorre gradualmente por meio de variações dentro das populações. O ritmo pode variar, mas “o cânone de ‘Natura non facit saltum‘”, como Darwin explicou, era “inteligível nessa teoria”. Mas hoje isso não é mais verdade. O primeiro problema, que as espécies apareceram abruptamente nos estratos, pode ser explicado como um registro fóssil irregular, embora trechos incríveis de progresso evolutivo devam ter desaparecido.

Mas o registro fóssil não é a única evidência de saltos. Desde Darwin, mudanças rápidas foram observadas diretamente em espécies que variam de bactérias e leveduras a plantas e animais. Considere os tentilhões domésticos que começaram a se espalhar pelos Estados Unidos na década de 1940, vindos do México e do sudoeste. Os bicos dessas aves adaptaram-se aos novos ambientes com grande velocidade. Em mais ou menos uma década, seus bicos se ajustaram aos novos habitats. (Grant) Em outro exemplo, os lagartos de parede italianos introduzidos em uma pequena ilha na costa da Croácia responderam rapidamente, desenvolvendo uma nova morfologia da cabeça e estrutura do trato digestivo. (Herrel, et. Al. ) Tal mudança “normalmente levaria milhões de anos para acontecer…” (Johnson) Da mesma forma, mexilhões introduzidos em um novo ambiente evoluíram “em um nanossegundo evolutivo em comparação com os milhares de anos anteriormente assumidos. (Os mexilhões evoluem rapidamente para se defenderem contra caranguejos invasores) Esses exemplos de adaptação não são novos, e um evolucionista concluiu que “a evolução pode ocorrer muito mais rapidamente do que pensávamos anteriormente. A evolução rápida é generalizada e a lista de exemplos está crescendo. (A evolução rápida ajuda os caçados a superar seus predadores)

Tudo isso significa que a evolução pode precisar de um novo mecanismo de mudança. Na verdade, parece duvidoso que pequenas variações biológicas levem a mudanças em grande escala. Como disse um evolucionista, a macroevolução é mais do que rodadas repetidas de microevolução. (Irwin) Cada vez mais os evolucionistas têm reconhecido a necessidade de um novo mecanismo para explicar a mudança evolutiva. (Gould, 579, 582) Nos últimos anos, os evolucionistas consideraram precisamente o que Darwin descartou: a evolução saltacional. aqui estão alguns exemplos:

À medida que a natureza salta, o gradualismo exclusivo é descartado. A evolução saltatória é um fenômeno natural, proporcionado por um colapso repentino dos limiares que resistem à evolução. O registro fóssil e o sistema taxonômico requerem uma interpretação macromutacional. (van Waesberghe)

Oferecemos evidências de três instâncias independentes de evolução saltacional em um gênero de mariposa encantadora com apenas oito espécies. … Cada espécie saltacional exibe um exemplo distinto e marcadamente diferente de evolução de característica descontínua. (Rubinoff e Le Roux)

As principais transições na evolução biológica mostram o mesmo padrão de emergência repentina de diversas formas em um novo nível de complexidade. As relações entre os grupos principais dentro de uma nova classe emergente de entidades biológicas são difíceis de decifrar e não parecem se encaixar no padrão de árvore que, seguindo a proposta original de Darwin, continua sendo a descrição dominante da evolução biológica. Os casos em questão incluem a origem de moléculas complexas de RNA e dobras de proteínas; principais grupos de vírus; archaea e bactérias, e as linhagens principais dentro de cada um desses domínios procarióticos; supergrupos eucarióticos; e filos animais. Em cada um desses nexos essenciais na história da vida, os principais “tipos” parecem aparecer rápida e totalmente equipados com os traços característicos do respectivo novo nível de organização biológica. Não são detectáveis “graus” intermediários ou formas intermediárias entre tipos diferentes. (Koonin)

Aqui fornecemos, pela primeira vez, evidências de grande saltação fenotípica na evolução do número do segmento em uma linhagem de centopéias. (Minelli, Chagas-Júnior e Edgecombe)


Títulos de artigos de pesquisa, que incluem frases como “adeus ao darwinismo, neo e outros“, “quando natura non facit saltum se tornar um mito“, “Evolução saltacional: monstros esperançosos estão aqui para ficar” e “uma Neo-Goldschmidtian visão de monstros esperançosos unicelulares”, destacam esta falsificação da previsão da evolução de que não há saltos.


Referências
Gould, Steven Jay. 2002. The Structure of Evolutionary Theory. Cambridge: Belknap Press.

Grant, B. 2010. “Should Evolutionary Theory Evolve?.” TheScientist January 1.

Herrel, A., et. al. 2008. “Rapid large scale evolutionary divergence in morphology and performance associated with the exploitation of a novel dietary resource in the lizard Podarcis sicula.” Proceedings of the National Academy of Sciences 105:4792-4795.

Irwin, D. 2000. “Macroevolution is more than repeated rounds of microevolution.” Evolution & Development 2:61-62.

Johnson, K. 2008. “Lizards rapidly evolve after introduction to island.” National Geographic News April 21.

Koonin, E. 2007. “The Biological Big Bang model for the major transitions in evolution.” Biology Direct 2:21.

Minelli, A., A. Chagas-Júnior, G. Edgecombe. 2009. “Saltational evolution of trunk segment number in centipedes.” Evolution & Development 11:318-322.

“Mussels evolve quickly to defend against invasive crabs.” 2006. ScienceDaily August 11. http://www.sciencedaily.com/releases/2006/08/060811091251.htm

“Rapid Evolution Helps Hunted Outwit Their Predators.” 2003. NewsWise July 16.
http://www.newswise.com/articles/view/?id=500152&sc=wire

Rubinoff, D., J. Le Roux. 2008. “Evidence of repeated and independent saltational evolution in a peculiar genus of sphinx moths (Proserpinus: Sphingidae).” PLoS One 3:e4035.

van Waesberghe, H. 1982. “Towards an alternative evolution model.” Acta Biotheoretica 31:3-28.

Estruturas Não Evoluem Antes De Serem Necessárias

By Cornelius Hunter | DarwinsPredictions

Uma premissa fundamental da teoria da evolução é que a evolução não tem previsão. É um processo cego que responde às necessidades atuais, não futuras. Isso significa que as estruturas biológicas não evoluem antes de serem necessárias. Mas muitos exemplos disso foram descobertos nos últimos anos. Por exemplo, nos estágios embrionários de uma ampla variedade de organismos, o desenvolvimento do sistema de visão é orquestrado por genes de controle semelhantes, conhecidos como fatores de transcrição. Como um artigo explicou, “Todos os olhos, invertebrados e vertebrados, se desenvolvem por meio de uma cascata de fatores de transcrição semelhantes, apesar das vastas distâncias filogenéticas. (Wake, Wake and Specht)

Como esses fatores de transcrição são tão prevalentes na árvore evolutiva, eles devem ter evoluído nos estágios iniciais da evolução, em um ancestral comum inicial. Mas isso foi antes de qualquer sistema de visão ter evoluído. O sistema de visão é apenas um dos vários exemplos que mostram que os componentes genéticos de muitas das atuais vias de desenvolvimento embrionário devem estar presentes muito antes de tais vias existirem. Os evolucionistas agora se referem ao aparecimento desses componentes genéticos, antes de serem usados como tais, como pré adaptação :

Comparações de genomas mostram que os primeiros clados contêm cada vez mais genes que medeiam o desenvolvimento de características complexas vistas apenas em ramos metazoários posteriores… A existência de elementos principais do kit de ferramentas de desenvolvimento bilateral nesses organismos mais simples implica que esses componentes evoluíram para outras funções além da produção de morfologia complexa, pré-adaptando o genoma para a diferenciação morfológica que ocorreu proeminente na filogenia dos metazoários. (Marshall e Valentine)


Essa pré-adaptação vai além do desenvolvimento embrionário. Por exemplo, vários componentes-chave do cérebro humano são encontrados em organismos unicelulares chamados coanoflagelados. Portanto, esses componentes-chave devem ter evoluído em organismos unicelulares, muito antes dos animais, cérebros e células nervosas existirem. Como explicou um evolucionista: “Os coanoflagelados têm muitos precursores para coisas que pensávamos estar presentes apenas em animais”. (Marshall)
Outro exemplo são as máquinas moleculares para o transporte de proteínas através da membrana interna da mitocôndria, que deve ter evoluído muito antes das mitocôndrias existirem. (Clements et. Al.)

Como explicou um evolucionista: “Você olha para as máquinas celulares e diz: por que diabos a biologia faria algo assim? É muito bizarro. Mas quando você pensa sobre isso de uma forma evolucionária neutra, em que essas máquinas surgem antes que haja uma necessidade delas, então faz sentido”. (Keim)


Referências

Clements, A., D. Bursac, X. Gatsos, et. al. 2009. “The reducible complexity of a mitochondrial molecular machine.” Proceedings of the National Academy of Sciences 106:15791-15795.

Keim, Brandon. 2009. “More ‘Evidence’ of Intelligent Design Shot Down by Science.” Wired Aug. 27. http://www.wired.com/wiredscience/2009/08/reduciblecomplexity/

Marshall, Michael. 2011. “Your brain chemistry existed before animals did.” NewScientist September 1.

Marshall C., J. Valentine. 2010. “The importance of preadapted genomes in the origin of the animal bodyplans and the Cambrian explosion.” Evolution 64:1189-1201.

Wake D., M. Wake, C. Specht. 2011. “Homoplasy: from detecting pattern to determining process and mechanism of evolution.” Science 331:1032-1035.

Estruturas Complexas Evoluíram De Estruturas Mais Simples

Darwins Predictions | Cornelius Hunter

Supor que o olho”, escreveu Darwin, “poderia ter sido formado pela seleção natural, parece, eu confesso livremente, um absurdo no mais alto grau possível”. Mas Darwin argumentou que não devemos ser enganados por nossas intuições. Dada a seleção natural operando em variações hereditárias, algumas das quais são úteis, então, se uma sequência de numerosas pequenas mudanças de um olho simples e imperfeito para um olho complexo e perfeito puder ser mostrado para poder existir, e se o olho é de alguma forma útil em cada etapa, então a dificuldade está resolvida. (Darwin, 143) A chave era identificar “uma longa série de gradações em complexidade, cada uma boa para seu possuidor”, que poderia levar a “qualquer grau concebível de perfeição”. (Darwin, 165) Mas, desde Darwin, a lista de estruturas complexas em biologia, para as quais nenhuma “série de gradações em complexidade” pôde ser encontrada, continuou a crescer mais. Tanto o registro fóssil quanto os dados genômicos revelam alta complexidade em linhagens onde a evolução esperava simplicidade. Como explicou um evolucionista:

É comumente acreditado que organismos complexos surgiram de organismos simples. No entanto, análises de genomas e de seus genes transcritos em vários organismos revelam que, no que diz respeito aos genes codificadores de proteínas, o repertório de uma anêmona do mar – um animal bastante simples, evolutivamente básico – é quase tão complexo quanto o de um humano.” (Technau)


A complexidade inicial também é evidente na bioquímica da célula. Por exemplo, as quinases são um tipo de enzima que regula várias funções celulares ao transferir um grupo fosfato para uma molécula alvo. As quinases são comuns em espécies de eucariotos e, portanto, devem persistir até o final da árvore evolutiva. E a semelhança entre as espécies das funções da quinase e suas moléculas de substrato significa que esses substratos da quinase devem ter permanecido praticamente inalterados por bilhões de anos. As complexas ações regulatórias das enzimas quinase devem estar presentes no início da história da vida. (Diks) Este não é de forma alguma um exemplo isolado. As histonas são uma classe de proteínas eucariotas que ajudam a organizar e empacotar o DNA e o gene que codifica a histona IV é altamente conservado entre as espécies. Então, novamente, a primeira histona IV deve ter sido muito semelhante às versões que vemos hoje. Um exemplo da complexidade inicial dos olhos é encontrado no trilobita há muito extinto. Ele tinha olhos talvez os mais complexos já produzidos pela natureza. Um especialista os chamou de “um feito de todos os tempos de otimização de funções“. (Levi-Setti, 29) Revisando os dados fósseis e moleculares, um evolucionista explicou que não há aparecimento sequencial dos principais grupos de animais “dos filos mais simples aos mais complexos, como seria previsto pelo modelo evolucionário clássico”. (Sherman) E como uma equipe de evolucionistas concluiu, “a genômica comparativa confirmou uma lição da paleontologia: a evolução não procede monotonicamente do mais simples para o mais complexo.”(Kurland)


Referências
Darwin, Charles. 1872. The Origin of Species. 6th ed. London: John Murray.
http://darwin-online.org.uk/content/frameset?itemID=F391&viewtype=text&pageseq=1
Diks, S., K. Parikh, M. van der Sijde, J. Joore, T. Ritsema, et. al. 2007. “Evidence for a minimal eukaryotic phosphoproteome?.” PLoS ONE 2.
Kurland, C., L. Collins, D. Penny. 2006. “Genomics and the irreducible nature of eukaryote cells.” Science 312:1011-1014.
Levi-Setti, Riccardo. 1993. Trilobites. 2d ed. Chicago: University of Chicago Press.
Sherman, M. 2007. “Universal genome in the origin of metazoa: Thoughts about evolution.” Cell Cycle 6:1873-1877.

Technau, U. 2008. “Evolutionary biology: Small regulatory RNAs pitch in.” Nature 455:1184-1185.

As espécies devem formar uma árvore evolutiva

Por Cornelius Hunter | Darwins Predictions




Desde Darwin, a árvore evolucionária universal tem sido um princípio unificador na biologia. A evolução previu que esta árvore universal pode ser derivada organizando as espécies de acordo com suas semelhanças e diferenças. E à medida que mais dados se tornaram disponíveis, particularmente a partir dos avanços dramáticos na biologia molecular na segunda metade do século XX, as expectativas eram altas para a determinação desta árvore. Como um artigo explica,



Uma vez que os caracteres universais estavam disponíveis para todos os organismos, a visão darwiniana de uma representação universal de toda a vida e sua história evolutiva de repente se tornou uma possibilidade realista. Cada vez mais se fazia referência a essa filogenia universal baseada em moléculas como a árvore ‘abrangente’ de “todo o espectro da vida” (O’Malley e Koonin).

Mas essas expectativas foram frustradas:

Em meados da década de 1980, havia grande otimismo de que as técnicas moleculares finalmente revelariam a árvore universal da vida em toda a sua glória. Ironicamente, o oposto aconteceu.” (Lawton)


Como um estudo explicou, o problema é tão confuso que os resultados “podem levar a uma alta confiança em hipóteses incorretas”. E embora os evolucionistas pensassem que mais dados resolveriam seus problemas, o oposto ocorreu. Com os volumes cada vez maiores de dados, a incongruência entre as árvores

tornou-se generalizada”. (Dávalos)

Como outro pesquisador explicou,

“Incongruências filogenéticas podem ser vistas em todos os lugares da árvore universal, desde sua raiz até as principais ramificações dentro e entre os vários táxons até a composição dos próprios agrupamentos primários.” (Woese)


Essas incongruências não são variações estatísticas menores e a falha geral de convergir para uma única topologia fez com que alguns pesquisadores pedissem um relaxamento do

pensamento em árvore“. (Bapteste, et. Al.)


Nem essas incongruências se limitam a genes codificadores de proteínas. Como uma pesquisa comentou:

Eu olhei para milhares de genes de microRNA e não consigo encontrar um único exemplo que suporte a árvore tradicional”. (Dolgin) 


Essas incongruências forçaram os evolucionistas a filtrar os dados com cuidado para obter árvores evolutivas. Como um artigo explica,

“selecionar genes com fortes sinais filogenéticos e demonstrar a ausência de incongruências significativas são essenciais para reconstruir com precisão as divergências antigas”. (Salichos e Rokas)

Mas isso levanta a questão de se a árvore resultante é real:

A estrutura hierárquica sempre pode ser imposta ou extraída de tais conjuntos de dados por algoritmos projetados para isso, mas em sua base a TOL universal [árvore da vida ] baseia-se em uma suposição não comprovada sobre o padrão que, dado o que sabemos sobre o processo, é improvável que seja amplamente verdadeiro. ”(Doolittle e Bapteste). 


_____________

Referências:

Bapteste E., et. al. 2005. “Do orthologous gene phylogenies really support tree-thinking?.” BMC Evolutionary Biology5:33.
 
Dávalos L., et. al. 2012. “Understanding phylogenetic incongruence: lessons from phyllostomid bats.” Biological Reviews Cambridge Philosophical Society 87:991-1024.
 
Dolgin, E. 2012. “Phylogeny: Rewriting evolution.” Nature 486:460-462.
 
Doolittle, W., E. Bapteste. 2007. “Pattern pluralism and the Tree of Life hypothesis.” Proceedings of the National Academy of Sciences 104:2043-2049.
 
Lawton, G. 2009. “Why Darwin was wrong about the tree of life.” New Scientist January 21.
 
O’Malley, M., E. Koonin. 2011. “How stands the Tree of Life a century and a half after The Origin?.” Biology Direct6:32.
 
Salichos L., A. Rokas. 2013. “Inferring ancient divergences requires genes with strong phylogenetic signals.”Nature 497:327-331.

Woese C. 1998. “The universal ancestor.” Proceedings of the National Academy of Sciences 95:6854-6859.

Características Genômicas Não São Distribuídas Esporadicamente

By Cornelius Hunter – Darwins Predictions

Um conceito fundamental na teoria da evolução é a herança de variações genéticas por meio de linhas de sangue.(Forbes) Essa chamada transmissão vertical de material hereditário significa que os genes, e os genomas em geral, devem cair em um padrão de descendência comum, consistente com a árvore evolutiva. Na verdade, esses genes são freqüentemente citados como uma confirmação da evolução. Mas, à medida que mais dados genômicos se tornam disponíveis, um número cada vez maior de genes foi descoberto que não se encaixam no padrão de descendência comum porque estão ausentes em muitas espécies intermediárias. (Andersson e Roger 2002; Andersson e Roger 2003; Andersson 2005; Andersson, Sarchfield e Roger 2005; Andersson 2006; Andersson et. Al. 2006; Andersson 2009; Andersson 2011; Haegeman, Jones e Danchin; Katz; Keeling and Palmer; Richards et. al 2006a; Richards et. al 2006b; Takishita et. al .; Wolf et. al.) Este tipo de padrão também é encontrado para características de arquitetura do genoma que são esporadicamente distribuídas e, em seguida, surpreendentemente semelhantes em espécies distantes. Na verdade, essas semelhanças não ocorrem apenas duas vezes, em duas espécies distantes.Freqüentemente, ocorrem repetidamente em uma variedade de espécies distantes. Isso é tão difundido que os evolucionistas chamaram o fenômeno de “evolução recorrente”.Como um artigo explica, a recente explosão de dados do genoma revela “características genômicas surpreendentemente semelhantes em linhagens diferentes”. Além disso, existem “características cuja distribuição está ‘espalhada’ pela árvore evolutiva, indicando evolução independente repetida de características genômicas semelhantes em linhagens diferentes.” (Maeso, Roy e Irimia) Um exemplo é a estranha semelhança entre o genoma canguru e o humano. Como explicou um evolucionista: “Existem algumas diferenças, temos um pouco mais disso, um pouco menos daquilo, mas eles são os mesmos genes e muitos deles estão na mesma ordem. Nós pensamos que eles seriam completamente embaralhados, mas não estão.” (Taylor) Agora é bem reconhecido que esta previsão falhou: “A transmissão vertical de material hereditário, uma pedra angular da teoria da evolução de Darwin, é inadequada para descrever a evolução dos eucariotos, particularmente dos eucariotos microbianos.” (Katz) E esses padrões esporádicos e irregulares requerem cenários complicados e ad hoc para explicar sua origem. Como um artigo explicou, a evolução de um determinado conjunto de genes “revela uma história complexa de eventos de transferência horizontal de genes”. (Wolf et. Al.) O resultado é que qualquer padrão pode ser explicado organizando-se os mecanismos corretos. Características que são compartilhadas entre espécies semelhantes podem ser interpretadas como “o resultado de uma história evolutiva comum”, e características que não são podem ser interpretadas como “o resultado de forças evolutivas comuns”. (Maeso, Roy e Irimia) Essas forças evolutivas comuns são complexas e devem ter sido criadas pela evolução. Eles podem incluir transferência gênica horizontal (ou lateral), perda gênica, fusão gênica e até mesmo forças desconhecidas. Por exemplo, um estudo concluiu que a melhor explicação para o padrão de um determinado gene era que ele “foi transferido lateralmente entre eucariotos filogeneticamente divergentes por meio de um mecanismo desconhecido”. (Takishita et. Al.) Mesmo com a grande variedade de mecanismos disponíveis, ainda permanece o mecanismo desconhecido.

⬛ ⬛ ⬛ ⬛ ⬛ ⬛ ⬛ ⬛ ⬛ ⬛

Referências

◾Andersson, J., A. Roger. 2002. “Evolutionary analyses of the small subunit of glutamate synthase: gene order conservation, gene fusions, and prokaryote-to-eukaryote lateral gene transfers.” Eukaryotic Cell 1:304-310.

◾Andersson, J., A. Roger. 2003. “Evolution of glutamate dehydrogenase genes: evidence for lateral gene transfer within and between prokaryotes and eukaryotes.” BMC Evolutionary Biology3:14.

◾Andersson, J. 2005. “Lateral gene transfer in eukaryotes.” Cellular and Molecular Life Sciences 62:1182-97.

◾Andersson, J., S. Sarchfield, A Roger. 2005. “Gene transfers from nanoarchaeota to an ancestor of diplomonads and parabasalids.”Molecular Biology and Evolution 22:85-90.

◾Andersson, J. 2006. “Convergent evolution: gene sharing by eukaryotic plant pathogens.” Current Biology16:R804-R806.

◾Andersson, J., R. Hirt, P. Foster, A. Roger. 2006. “Evolution of four gene families with patchy phylogenetic distributions: influx of genes into protist genomes.” BMC Evolutionary Biology 6:27.

◾Andersson, J. 2009. “Horizontal gene transfer between microbial eukaryotes.” Methods in Molecular Biology 532:473-487.

◾Andersson, J. 2011. “Evolution of patchily distributed proteins shared between eukaryotes and prokaryotes: Dictyostelium as a case study.” J Molecular Microbiology and Biotechnology 20:83-95.

◾Haegeman, A., J. Jones, E. Danchin. 2011. “Horizontal gene transfer in nematodes: a catalyst for plant parasitism?.” Molecular Plant-Microbe Interactions 24:879-87.

◾Katz, L. 2002. “Lateral gene transfers and the evolution of eukaryotes: theories and data.” International J. Systematic and Evolutionary Microbiology 52:1893-1900.

◾Keeling, P., J. Palmer. 2008. “Horizontal gene transfer in eukaryotic evolution,”Nature Reviews Genetics 9:605-18.

◾Maeso, I, S. Roy, M. Irimia. 2012. “Widespread Recurrent Evolution of Genomic Features.” Genome Biology and Evolution 4:486-500.

◾Richards, T., J. Dacks, J. Jenkinson, C. Thornton, N. Talbot. 2006. “Evolution of filamentous plant pathogens: gene exchange across eukaryotic kingdoms.”Current Biology 16:1857-1864.

◾Richards, T., J. Dacks, S. Campbell, J. Blanchard, P. Foster, R. McLeod, C. Roberts. 2006. “Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements.”Eukaryotic Cell 5:1517-31.

◾Takishita, K., Y. Chikaraishi, M. Leger, E. Kim, A. Yabuki, N. Ohkouchi, A. Roger. 2012. “Lateral transfer of tetrahymanol-synthesizing genes has allowed multiple diverse eukaryote lineages to independently adapt to environments without oxygen.” Biology Direct 7:5.

◾Taylor, R. 2008. “Kangaroo genes close to humans,” Reuters, Canberra, Nov 18.

Wolf, Y., L. Aravind, N. Grishin, E. Koonin. 1999. “Evolution of aminoacyl-tRNA synthetases–analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events.”Genome Research 9:689-710.

Espécies Semelhantes Compartilham Genes Semelhantes. [As Primeiras Previsões da Evolução]

Por Darwins Predictions – Cornelius Hunter

[Texto adaptado]

 

 

A única figura no livro de Darwin, The Origin of Species, mostrou como ele imaginava as espécies se ramificando. As espécies semelhantes têm um antepassado comum relativamente recente e tiveram tempo limitado para divergirem umas das outras. Isso significa que seus genes devem ser semelhantes.

1200px-Origin_of_Species_title_page.jpg

Genes inteiramente novos, por exemplo, não teriam tempo suficiente para evoluir. Como François Jacob explicou em um paper influente de 1977: “A probabilidade de uma proteína funcional aparecer de novo por associação aleatória de aminoácidos é praticamente zero“. (Jacob) Qualquer gene recém-criado teria que surgir de uma duplicação e modificação de um gene pré-existente. (Zhou et al., Ohno) Mas esse novo gene manteria uma semelhança significativa com o seu gene progenitor. De fato, durante décadas, os evolucionistas mencionaram pequenas diferenças genéticas entre espécies semelhantes como uma confirmação dessa importante predição. (Berra, 20; Futuyma, 50; Johnson e Raven, 287; Jukes, 120; Mayr, 35)

MS-DAR-00121-000-p36-Tree-of-Life.jpg

Mas esta previsão foi falsificada, já que muitas diferenças genéticas inesperadas, foram descobertas entre uma ampla gama de espécies de uma mesma família. (Pilcher) Tanto quanto um terço dos genes em uma determinada espécie pode ser único, e mesmo diferentes variantes dentro da mesma espécie têm um grande número de genes únicos para cada variante. Variantes diferentes da bactéria Escherichia coli, por exemplo, têm centenas de genes únicos. (Daubin e Ochman)

Diferenças genéticas significativas também foram encontradas entre diferentes espécies de moscas da fruta. Milhares de genes apareceram em muitas espécies, e alguns genes apareceram em uma única espécie. (Levine et al.) Como um escritor científico colocou, “surpreendentes 12 por cento dos genes recentemente evoluídos nas moscas da fruta parecem ter evoluído a partir do zero“. (Le Page) Esses novos genes devem ter evoluído ao longo de alguns milhões de anos, um período de tempo considerado, anteriormente, à permitir apenas pequenas mudanças genéticas. (Begun et al., Chen et al., 2007)

Inicialmente, alguns evolucionistas pensaram que esses resultados surpreendentes seriam resolvidos quando mais genomas fossem analisados. Eles previam que cópias semelhantes desses genes seriam encontradas em outras espécies. Mas, em vez disso, cada novo genoma revelou ainda mais novos genes. (Curtis et al., Marsden et al .; Pilcher)

dnahead-640x353.jpg

Evolucionistas posteriores pensaram que esses genes únicos em rápida evolução, não deveriam codificar para proteínas funcionais ou importantes. Mas, novamente, muitas das proteínas únicas, foram, de fato, descobertas desempenhando papéis essenciais. (Chen, Zhang e Long 1010, Daubin e Ochman, Pilcher) Como um pesquisador explicou: “Isso vai contra os livros didáticos, que dizem que os genes que codificam funções essenciais foram criados num passado bem distante.” (Pilcher).

 


 

Referências:

Begun, D., H. Lindfors, A. Kern, C. Jones. 2007. “Evidence for de novo evolution of testis-expressed genes in the Drosophila yakuba/Drosophila erecta clade.” Genetics176:1131-1137.
 
Berra, Tim. 1990. Evolution and the Myth of Creationism. Stanford: Stanford University Press.
 
Chen, S., H. Cheng, D. Barbash, H. Yang. 2007. “Evolution of hydra, a recently evolved testis-expressed gene with nine alternative first exons in Drosophila melanogaster.” PLoS Genetics 3.
 
Chen, S., Y. Zhang, M. Long. 2010. “New Genes in Drosophila Quickly Become Essential.” Science 330:1682-1685.
 
Curtis, B., et. al. 2012. “Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs.” Nature 492:59-65.
 
Daubin, V., H. Ochman. 2004. “Bacterial genomes as new gene homes: The genealogy of ORFans in E. coli.” Genome Research 14:1036-1042.
 
Futuyma, Douglas. 1982. Science on Trial: The Case for Evolution. New York: Pantheon Books.
 
Jacob, François. 1977. “Evolution and tinkering.” Science 196:1161-1166.
 
Johnson, G., P. Raven. 2004. Biology. New York: Holt, Rinehart and Winston.
 
Jukes, Thomas. 1983. “Molecular evidence for evolution” in: Scientists Confront Creationism, ed. Laurie Godfrey. New York: W. W. Norton.
 
Le Page, M. 2008. “Recipes for life: How genes evolve.” New Scientist, November 24.
 
Levine, M., C. Jones, A. Kern, H. Lindfors, D. Begun. 2006. “Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression.” Proceedings of the National Academy of Sciences 103: 9935-9939.
 
Marsden, R. et. al. 2006. “Comprehensive genome analysis of 203 genomes provides structural genomics with new insights into protein family space.” Nucleic Acids Research34:1066-1080.
 
Mayr, Ernst. 2001. What Evolution Is. New York: Basic Books.
 
Ohno, Susumu. 1970. Evolution by Gene Duplication. Heidelberg: Springer.
 
Pilcher, Helen. 2013. “All Alone.” NewScientist January 19.

Zhou, Q., G. Zhang, Y. Zhang, et. al. 2008. “On the origin of new genes in Drosophila.” Genome Research 18:1446-1455.

 

 

Não existe linhagem específica em biologia. – Primeiras previsões da evolução.

Por Darwins Predictions – Cornelius Hunters

[ Titulo e texto adptado ]


journal.pbio.1000112.g006.png

A evolução espera que as espécies caiam em um padrão de descida comum. Portanto, uma linhagem particular não deve ter projetos altamente diferenciados, únicos e complexos, quando comparados com espécies vizinhas. Mas isso tem sido cada vez mais o caso, tanto que este padrão agora tem seu próprio nome: biologia de linhagem específica.

Por exemplo, os fatores de transcrição são proteínas que se ligam ao DNA e regulam os genes que são expressos. No entanto, apesar da importância destas proteínas, os seus locais de ligação ao DNA variam dramaticamente entre espécies diferentes. Como um relatório explicou, “supôs-se amplamente que, tal como as sequências dos próprios genes, estes locais de ligação do fator de transcrição seriam altamente conservados ao longo da evolução. No entanto, este não é o caso em mamíferos.(Rewiring of gene regulation across 300 million years of evolution)

Os evolucionistas foram surpreendidos quando se verificou que os locais de ligação do fator de transcrição não eram conservados entre ratos e homens, (Kunarso et. al.) entre vários outros vertebrados, e mesmo entre diferentes espécies de levedura. Assim, agora se acredita que a evolução realizou uma maciça, “restruturação” de linhagens especificas  de redes celulares reguladoras. (Pennacchio and Visel)

Há muitos outros exemplos de biologia de linhagem específica. Embora as flores tenham quatro partes básicas: sépalas, pétalas, estames e carpelos, a trombeta do narciso é fundamentalmente diferente e deve ser uma “novidade” evolutiva (os cientistas de Oxford dizem que trombetas em narcisos são “órgãos novos”) das milhares de espécies de baratas, Saltoblattella montistabularis da África do Sul é a única que salta. Com as suas patas traseiras com mola, ela acelera a 23 g e salta até aos funis de gramas. (Picker, Colville and Burrows)

Um importante componente do sistema imunológico, altamente conservado entre os vertebrados, está misteriosamente ausente no bacalhau do Atlântico, Gadus morhua. (Star, et al.) As algas marinhas, Ectocarpus siliculosus, tem enzimas únicas para a biossíntese e outras tarefas. (Cock) E as algas Bigelowiella natans tem dez mil genes únicos e máquinas de emenda de genes altamente complexas, nunca vistas antes em um organismo unicelular. Foi como um evolucionista explicou, “sem precedentes e verdadeiramente notável para um organismo unicelular“. (Tiny algae shed light on photosynthesis as a dynamic property)

Outro exemplo fascinante de biologia de linhagem específica, são as muitas novidades morfológicas e moleculares peculiares encontradas em protistas unicelulares dispares e não relacionadas. Como um estudo concluiu: “Tanto os euglenozoários como os alveolados têm a reputação de “fazer as coisas à sua maneira”, ou seja, desenvolver caminhos aparentemente únicos, para construir estruturas celulares importantes ou realizar tarefas moleculares críticas para a sua sobrevivência. Por que tais pontos críticos para a evolução de novas soluções para problemas, devam existir na árvore da vida, não está totalmente claro.” (Lukes, Leander and Keeling, 2009a) Ou como um evolucionista exclamou: “Isso é totalmente louco.(Lukes, Leander and Keeling, 2009b)


Referencias:

  • Cock, J., et al. 2010. “The Ectocarpus genome and the independent evolution of multicellularity in brown algae.” Nature 465:617-621.
  • Kunarso G., et. al. 2010. “Transposable elements have rewired the core regulatory network of human embryonic stem cells.” Nature Genetics 42:631-634.
  • Lukes, J., B. Leander, P. Keeling. 2009. “Cascades of convergent evolution: the corresponding evolutionary histories of euglenozoans and dinoflagellates.” Proceedings of the National Academy of Sciences 106 Suppl 1:9963-9970.
  • Pennacchio, L., A. Visel. 2010. “Limits of sequence and functional conservation.” Nature Genetics 42:557-558.
  • Picker, M., J. Colville, M. Burrows. 2012. “A cockroach that jumps.” Biology Letters 8:390-392.
  • Star, B., et. al. 2011. “The genome sequence of Atlantic cod reveals a unique immune system.” Nature 477:207–210.

 

  • “Tiny algae shed light on photosynthesis as a dynamic property.” 2012. ScienceDaily November 28. http://www.sciencedaily.com­ /releases/2012/11/121128132253.htm

Testes sorológicos revelam relações evolutivas – As primeiras previsões da evolução.

Por Darwins Predictions – Cornelius Hunter

thumbs.web.sapo.jpg

No início do século XX cientistas estudaram a imunidade do sangue e como a reação imune poderia ser usada para comparar as espécies. Os estudos sobre o sangue tendem a produzir resultados que são paralelos aos indicadores mais óbvios, como os planos corporais. Por exemplo, os seres humanos foram estabelecidos mais estreitamente relacionados com macacos do que com peixes ou coelhos. Estes achados foram considerados fortes confirmações da evolução. Em 1923 H. Lane citou esta evidência como apoio ao “ fato da evolução“. (Lane, 47) No mesmo século mais tarde, essas descobertas continuaram a ser citadas em apoio da evolução. (Berra, 19; Dodson and Dodson, 65)

Mas, mesmo em meados do século XX, as contradições às expectativas evolucionistas estavam se tornando evidentes em testes sorológicos. Como explicou J.B.S.Haldane em 1949:”Agora cada espécie de mamífero e pássaro até então investigada mostrou consideravelmente, uma diversidade bioquímica surpreendente, através de testes sorológicos. Os antígenos em causa parecem ser proteínas às quais estão ligados os polissacarídios.(Citado em Gagneux e Varki)

Na verdade, esses polissacarídeos, ou glicanos, não preenchiam as expectativas evolucionistas. Como explicou um paper, os glicanos mostram “Distribuição notavelmente descontínua através das linhagens evolutivas,” porque ocorre “em uma distribuição descontínua e intrigante através das linhagens evolutivas.(Bishop and Gagneux) Estes glicanos podem ser (i) específicos de uma linhagem particular, (i) semelhantes em linhagens muito distantes, (iii) e visivelmente ausentes apenas numa taxa muito restrita.

Aqui está como outro paper descreveu descobertas sobre o glicano: “Também não existe uma explicação clara para a extrema complexidade e diversidade de glicanos que podem ser encontrados num determinado tipo de glicoconjugado ou célula. Com base nas informações limitadas disponíveis sobre o escopo e a distribuição dessa diversidade entre os grupos taxonômicos, é difícil ver tendências ou padrões claros compatíveis com diferentes linhagens evolutivas.(Gagneux and Varki)


Referências

Berra, Tim. 1990. Evolution and the Myth of Creationism. Stanford: Stanford University Press.

Bishop J., P. Gagneux. 2007. “Evolution of carbohydrate antigens–microbial forces shaping host glycomes?.” Glycobiology 17:23R-34R.

Dodson, Edward, Peter Dodson. 1976. Evolution: Process and Product. New York: D. Van Nostrand Company.

Gagneux, P., A. Varki. 1999. “Evolutionary considerations in relating oligosaccharide diversity to biological function.” Glycobiology 9:747-755.

Lane, H. 1923. Evolution and Christian Faith. Princeton: Princeton University Press.

O padrão Pentadáctilo e a descendência comum – As primeiras previsões da evolução.

By Cornelius Hunter – Darwins Predictions

[Texto adaptado a partir do original]

A pentadáctila – estrutura de cinco dígitos (quatro dedos e um polegar para os seres humanos) no final da estrutura do membro (locomotor) é um dos textos de prova mais célebres para a evolução.  A estrutura pentadáctila é encontrada em todos os tetrápodes e seus usos incluem o voo, o segurar/agarrar, o escalar e o rastejar. Tais atividades diversas, na lógica evolucionista, devem exigir diversos membros. Não parece haver nenhuma razão para que todos devam precisar de um membro de cinco dígitos apenas. Por que não três dígitos para alguns, oito para outros, treze para alguns outros, e assim por diante? E, no entanto todos eles são dotados de cinco dígitos. Como explicado por Darwin, “O que pode ser mais curioso que a mão de um homem, formada para agarrar, de uma toupeira para cavar, a perna do cavalo, a nadadeira da toninha (boto), e a asa do morcego? Tudo deve ser construído no mesmo padrão, e deve incluir ossos similares, nas mesmas posições relativas. (Darwin, 382)

Tal design abaixo do ideal deve ser um artefato de uma descida de design (comum) abaixo do ideal, que foi proferido a partir de um ancestral comum, ao invés de ter sido especificamente concebido para cada espécie. E o padrão de descendência comum formado por essa estrutura é muitas vezes apontado como uma forte evidência para a evolução. (Berra, 21; Campbell et al, 509; Futuyma, 47; Johnson e Losos, 298; Johnson e Raven, 286; Mayr, 26). Há um texto que chama de “exemplo clássico” de evidência evolutiva. (Ridley, 45)

biochemistry

Mas agora se sabe que esta previsão é falsa. A estrutura de dígitos nos tetrápodes não se conforma com o padrão de descendência comum. Na verdade, apêndices (estrutura locomotora) têm várias estruturas de dígitos e elas são distribuídas através das espécies de várias maneiras. Isto é encontrado tanto em espécies existentes quanto no registro fóssil. Como explicado pelo evolucionista Stephen Jay Gould, “A conclusão parece inevitável, e uma velha ”certeza” deve ser duramente revertida. (Gould)

Isto significa que os evolucionistas não podem modelar as estruturas e o padrão de distribuição observados, como uma mera consequência de descendência comum. Em vez disso, uma história evolutiva complicada é necessária (Brown) onde a estrutura pentadáctila “re-evolui” em diferentes linhagens, e apêndices evoluem, são perdidas, e depois evoluem novamente. E como concluído em um estudo recente: “Nossos resultados filogenéticos apoiam exemplos independentes de perda de membro completo, bem como vários exemplos de perda e reaquisição de dígitos, tal como a perda e reaquisição da  abertura do ouvido externo (“orelha”). Ainda mais impressionante, encontramos um forte apoio estatístico para a reaquisição de uma forma do corpo (estrutura) pentadáctilo de um ancestral com dígitos a menos… Os resultados do nosso estudo se juntam a um corpo emergente de literatura, mostrando um forte suporte estatístico para a perda de caracteres, seguido por reaquisição evolutiva de estruturas complexas associadas a uma forma generalizada do corpo pentadáctilo.(Siler e Brown)

Referencias:

 

 

Berra, Tim. 1990. Evolution and the Myth of Creationism. Stanford: Stanford University Press.

 

Brown, R., et. al. 2012. “Species delimitation and digit number in a North African skink.” Ecology and Evolution 2:2962-73.

 

Campbell, Neil, et. al. 2011. Biology. 5th ed. San Francisco: Pearson.

 

Darwin, Charles. 1872. The Origin of Species. 6th ed. London: John Murray.

http://darwin-online.org.uk/content/frameset?itemID=F391&viewtype=text&pageseq=1

 

Futuyma, Douglas. 1982. Science on Trial: The Case for Evolution. New York: Pantheon Books.

 

Gould, Steven Jay. 1991. “Eight (or Fewer) Little Piggies.” Natural History 100:22-29.

 

Johnson, G., J. Losos. 2008. The Living World. 5th ed. New York: McGraw-Hill.

 

Johnson, G., P. Raven. 2004. Biology. New York: Holt, Rinehart and Winston.

 

Mayr, Ernst. 2001. What Evolution Is. New York: Basic Books.

 

Ridley, Mark. 1993. Evolution. Boston: Blackwell Scientific.

Siler C., R. Brown. 2011. “Evidence for repeated acquisition and loss of complex body-form characters in an insular clade of Southeast Asian semi-fossorial skinks.” Evolution 65:2641-2663.

 

 

A evolução das proteínas. – As primeiras previsões da evolução.

Por Darwins Predictions – Cornelius Hunter

 

 

ovo_galinha_dna_prot

 

 

 

 

Genes codificadores de proteínas constituem apenas uma pequena fração do genoma em organismos superiores, mas os seus produtos de proteínas são cruciais para o funcionamento da célula. Eles são apenas os trabalhadores atrás de cada tarefa na célula, incluindo a digestão dos alimentos, a síntese de produtos químicos, apoio estrutural, conversão de energia, a reprodução celular e fazer novas proteínas. E como uma máquina bem afinada, as proteínas fazem o seu trabalho muito bem. As proteínas são onipresentes em toda a vida e devem datar desde os primeiros estágios da evolução. Portanto, a evolução prevê que as proteínas evoluíram quando a vida apareceu pela primeira vez, ou não muito tempo depois. Mas apesar dos enormes esforços de pesquisa científica, ficou claro que a tal evolução das proteínas é astronomicamente improvável.

Uma das razões do porque a evolução das proteínas é tão difícil é que a maioria das proteínas são designs extremamente específicos em uma outra paisagem robusta de fitness. Isto significa que é difícil para a seleção natural orientar mutações em direção as proteínas necessárias.Na verdade, quatro estudos diferentes, realizados por diferentes grupos e utilizando métodos diferentes, relatam; todos, que cerca de 10 70 de experiências evolutivas seriam necessárias para chegar perto o suficiente de uma proteína funcional antes da seleção natural poder assumir e refinar o design da proteína.Por exemplo, um dos estudos concluiu que 10 63  de tentativas seriam necessárias para uma proteína, relativamente curta.(Reidhaar-Olson) E um resultado semelhante (10 65 de tentativas necessárias) foi obtido comparando as sequências de proteína.(Yockey) Outro estudo descobriu que são necessárias de 1064 a 1077 de tentativas (Axe) e um outro estudo concluiu que 10  70 de tentativas seriam necessárias.(Hayashi) Nesse caso, a proteína foi apenas  parte de uma proteína maior, que no caso era intacta, tornando assim mais fácil para a pesquisa. Além disso, estas estimativas são otimistas porque os experimentos eram apenas para procurar  proteínas com uma única função; enquanto que as proteínas reais executam várias funções.

Esta estimativa conservadora de 10 70 de tentativas necessárias para evoluir uma proteína simples é astronomicamente maior do que o número de tentativas que são viáveis.E explicações de como a evolução poderia alcançar um grande número de buscas, ou de alguma forma evitar esse requisito, exige a pre-existência de proteínas e por isso são explicações circulares.Por exemplo, um papel estimou que a evolução poderia ter feito 10 43  de tais tentativas. Mas o estudo assumiu todo o tempo da história da terra disponível, em vez de uma janela limitada de tempo, que na verdade, a evolução teria tido. Ainda mais importante, o estudo assumiu a pré-existência de uma grande população de bactérias (que assumiu que terra foi completamente coberta com bactérias).E, claro, as bactérias estão cheias de proteínas.Claramente essas bactérias não existiriam antes das primeiras proteínas evoluírem.(Dryden) Mesmo com estes pressupostos convenientes irreais, o resultado foi de vinte e sete ordens de magnitude aquém do exigido.

Tendo em conta estes vários problemas significativos, as chances da evolução ter encontrado proteínas a partir de um início aleatório são, como explicou um evolucionista , “altamente improvável“. (Tautz) Ou como outro evolucionista colocou, “embora a origem dos primeiros genes primordiais poder, em última instância, ser rastreada até alguns precursores do então chamado “mundo de RNA” de bilhões de anos atrás, suas origens permanecem enigmáticas.” (Kaessmann)

(Texto adaptado)

 

****Obs: A imagem do texto é do Livro Fomos Planejados (Marcos Eberlin)

 

Referências
Axe, D. 2004. “Estimating the prevalence of protein sequences adopting functional enzyme folds.” J Molecular Biology341:1295-1315.

Dryden, David, Andrew Thomson, John White. 2008. “How much of protein sequence space has been explored by life on Earth?.” J. Royal Society Interface 5:953-956.

Hayashi, Y., T. Aita, H. Toyota, Y. Husimi, I. Urabe, T. Yomo. 2006. “Experimental Rugged Fitness Landscape in Protein Sequence Space.” PLoS ONE 1:e96.

Kaessmann, H. 2010. “Origins, evolution, and phenotypic impact of new genes.” Genome Research 10:1313-26.

Reidhaar-Olson J., R. Sauer. 1990. “Functionally acceptable substitutions in two alpha-helical regions of lambda repressor.” Proteins 7:306-316.

Tautz, Diethard, Tomislav Domazet-Lošo. 2011. “The evolutionary origin of orphan genes.” Nature Reviews Genetics12:692-702.
Yockey, Hubert. 1977. “A calculation of the probability of spontaneous biogenesis by information theory.” J Theoretical Biology 67:377–398.

A competição é maior entre os vizinhos. As primeiras previsões da evolução.

By Darwins Predictions – Cornelius Hunter.

A teoria básica da evolução de Darwin, por si só, não conta para o padrão hierárquico de árvore entre as espécies que foi pensado se formar entre elas. Darwin estava bem ciente desta lacuna e lutou com ela durante anos. Ele finalmente concebeu uma solução para isso: uma prole modificada iria continuar a evoluir e divergir longe de seus pais. O princípio da divergência, a última principal adição teórica, antes de Darwin publicar seu livro, considerou que a concorrência tende a ser mais forte entre os organismos mais intimamente relacionados. Isto iria causar uma separação e divergência, resultando no padrão tradicional de uma árvore evolutiva. (Desmond e Moore 1991, 419-420; Ridley, 378-379)

thumbnailgenerator

Mas tal tendência não tem sido observada. Em um importante estudo sobre a concorrência entre as espécie de algas verdes de água doce, foi descoberto que no nível de concorrência entre os pares de espécies não há correlação com a distância evolutiva entre elas. Como os pesquisadores explicaram, Darwin “argumentou que espécies estreitamente relacionadas devem competir mais fortemente e serem menos propensas a coexistirem. Durante grande parte do século passado, a hipótese de Darwin foi tomada pelo seu valor nominal […] Nossos resultados adicionam um corpo crescente de literatura que não consegue suportar a hipótese original de Darwin “competição-parentesco” “. (Venail, et. Al., 2, 9 )

main-qimg-8bf98721ecf1f9d452acb3505ec1c47c

A equipe passou meses tentando resolver o problema, mas sem sucesso. Como explicou um dos pesquisadores:

Isso foi completamente inesperado. Quando vimos os resultados, dissemos: “isso não pode ser.” Nós nos sentamos lá, batendo a cabeça contra a parede. A hipótese de Darwin tem estado conosco por tanto tempo, como pode não estar certa? … Quando começamos a chegar com números que mostravam que ele [Darwin] não estava certo, ficamos completamente perplexos… Devemos ser capazes de olhar para a árvore da vida, e a evolução deve deixar claro quem vai ganhar na competição e quem vai perder. Mas os traços que regulam a concorrência não podem ser previstos a partir de uma Árvore da Vida. (Cimons)

Por que esta predição de longa data não foi confirmada ainda permanece desconhecido. Aparentemente, há mais fatores complicadores que influenciam a concorrência, além de parentesco evolutivo.

Texto adaptado

Referencias

Cimons, Marlene. 2014. “Old Idea About Ecology Questioned by New Findings.” National Science Foundation.

Desmond, Adrian, James Moore. 1991. Darwin: The Life of a Tormented Evolutionist. New York: W. W. Norton.

Ridley, Mark. 1993. Evolution. Boston: Blackwell Scientific.
Venail , P.A., A. Narwani , K. Fritschie, M. A. Alexandrou, T. H. Oakley, B. J. Cardinale. 2014. “The influence of phylogenetic relatedness on competition and facilitation among freshwater algae in a mesocosm experiment.” Journal of Ecology, DOI: 10.1111/1365-2745.12271.