Como a condensação de proteínas diminui a atividade do gene e garante a sobrevivência de células estressadas

Pelo Instituto Max Planck de Imunobiologia e Epigenética | Phys Org

Modelo para a regulação da condensação NELF sob estresse, como choque térmico. Crédito: MPI of Immunbiology and Epigenetic, P. Rawat

Toda a vida na Terra desenvolveu várias camadas e redes para garantir a sobrevivência em eventos catastróficos. Até as células têm seu plano de emergência: a resposta ao choque térmico. Disparado por múltiplos estímulos de estresse, como calor, toxinas ou radiação, este programa de segurança celular tenta prevenir danos permanentes ao organismo. A resposta se assemelha a uma estratégia geral de ‘bloqueio’ adotada, testemunhada durante a pandemia global do vírus corona. Durante um bloqueio, apenas as atividades essenciais são permitidas e os recursos são desviados para medidas que garantam a minimização do impacto de uma pandemia.

Em condições normais, a RNA polimerase II desce pelo DNA. Nos locais corretos, o DNA é transcrito em mRNA, que é então traduzido em proteínas. Em uma crise, entretanto, essa atividade de transcrição deve parar, na maior parte, para interromper ou minimizar a produção de proteínas não essenciais durante condições de . Este movimento libera as capacidades necessárias para aumentar a produção de RNA e proteínas chamadas , que ajudam a lidar com a ameaça e os efeitos do estresse. A questão permanece: como colocar uma célula inteira sob bloqueio? diz Ritwick Sawarkar, líder do grupo no MPI de Imunobiologia e Epigenética e na Universidade de Cambridge.

Condensação NELF sob estresse – garante atenuação da transcrição do gene

Estudos anteriores do laboratório de Sawarkar deram os primeiros insights sobre o que acontece nas células, quando elas mudam do normal para o de emergência. O estresse causa o acúmulo do fator de alongamento negativo (NELF) no núcleo e interrompe a transcrição em um grande número de genes. Mas como exatamente o regulador transcricional NELF executa a chamada Atenuação Transcricional Induzida por Estresse (SITA) permaneceu desconhecido.

No início deste projeto, tentamos visualizar a proteína NELF com imagens de células vivas para entender melhor seu papel e regulação. Surpreendentemente, descobrimos que NELF forma puncta ou gotículas sob estresse, enquanto a mesma proteína permanece difundida sob . Chamamos essas gotículas de condensados NELF“, diz Prashant Rawat, primeiro autor do estudo. Junto com o Laboratório de Patrick Cramer no MPI for Biophysical Chemistry, que poderia recapitular as mesmas gotículas de NELF in vitro com proteínas purificadas recombinantes, as equipes propõem que a condensação biomolecular induzida por estresse facilita um recrutamento aprimorado de NELF para as regiões promotoras dos genes. Aqui, as gotículas NELF presumivelmente bloqueiam a atividade da polimerase e conduzem a regulação negativa da expressão gênica.

Imagens de microscopia confocal de alta resolução da proteína NELF-A marcada com mCherry (vermelha) em células HeLa humanas. A proteína NELF-A de tipo selvagem forma condensados induzidos por estresse após choque térmico (esquerda), enquanto a proteína sem região IDR falha em formar esses condensados (direita). Barra de escala: 5μm. Crédito: © MPI de Immunbiology and Epigenetic, P. Rawat

Condensação NELF movida a tentáculos

As subunidades NELF contêm as chamadas regiões intrinsecamente desordenadas (IDRs). IDRs são as partes de proteínas sem estrutura fixa e atuam como tentáculos. Os cientistas do Max Planck conseguiram mostrar que as interações entre os tentáculos do NELF são essenciais para a condensação. Muitas moléculas NELF individuais se unem e seus tentáculos se unem fortemente para formar a gota, como se segurassem as mãos uns dos outros. Mas o que mais nos intrigou foi que NELF sempre contém IDRs como parte de sua estrutura, mas só sofre condensação sob estresse“, diz Prashant Rawat.

Usando abordagens moleculares e bioquímicas do genoma e do proteoma, a equipe identificou modificações pós-tradução específicas (PTMs) que são essenciais para a condensação NELF. PTMs são alterações de proteínas após sua síntese e são frequentemente usados por células para responder a estímulos ambientais. Os resultados mostram que duas modificações diferentes tornam os condensados NELF possíveis. Descobrimos que mudanças contingentes ao estresse na fosforilação de NELF e mais SUMOilação governam a condensação de NELF”, disse Ritwick Sawarkar.

Condensação NELF relevante para aptidão celular

As células que falham em formar as gotículas NELF devido ao IDR prejudicado ou deficiência de SUMOilação também falham em regular negativamente os genes e a transcrição sob estresse. Se as células não ficarem bloqueadas pela condensação NELF e pela regulação negativa da transcrição, elas arriscam sua aptidão. Nossos dados mostram taxas de morte significativamente maiores de células sem NELF adequada durante o estresse“, disse Prashant Rawat.

Para Ritwick Sawarkar, esses resultados também destacam os aspectos colaborativos da vida nos Institutos Max Planck. Esta pesquisa só se tornou possível devido à estreita cooperação. O laboratório de Andrea Pichler no MPI-IE foi fundamental para entender o papel da máquina SUMO, enquanto outra colaboração com o laboratório de Patrick Cramer no MPI-BPC Göttingen poderia recapitular as mesmas gotículas NELF in vitro com purificado recombinante proteico“, diz Ritwick Sawarkar, principal autor do estudo.

Já se especula que a regulação negativa da transcrição induzida por estresse esteja associada a distúrbios neurológicos como Huntington. Já geramos modelos de camundongos no instituto para estender nossas descobertas in vivo e a modelos de doenças relevantes“, disse Prashant Rawat. A possibilidade de explorar o papel dos condensados NELF em diferentes doenças parece ser um caminho estimulante para pesquisas futuras em laboratório.

[Ênfase adicionada]


Mais informações: Prashant Rawat et al. Stress-induced nuclear condensation of NELF drives transcriptional downregulation. Molecular Cell. February 05, 2021 DOI:doi.org/10.1016/j.molcel.2021.01.016

Diário informativo: Molecular Cell