Pesquisadores Descobrem Um Novo Manual De Instruções Para Reparar DNA Quebrado.

Por Science Daily

[Obs: Texto adaptado – O texto possui links em inglês que não estão no original do Science Daily – Imagem do SD]

Resumo:

Pesquisadores descobriram como a proteína Rad52 é uma peça crucial no reparo de DNA dependente de RNA. Os resultados revelam uma função inesperada na proteína Rad52; proteína envolvida em recombinação homóloga, e podem ajudar a identificar novos alvos terapêuticos para o tratamento do câncer.

 

170608123648_1_540x360.jpg

 

A radiação e a quimioterapia podem causar a ruptura do DNA de cadeia dupla, um dos tipos mais prejudiciais ao DNA. O processo de recombinação homóloga – que envolve a troca de informações genéticas entre duas moléculas de DNA – desempenha um papel importante no reparo do DNA, mas certas mutações genéticas podem desestabilizar um genoma. Por exemplo, mutações no supressor de tumor, BRCA2, que está envolvido no reparo do DNA por recombinação homóloga, podem causar a forma mais mortal de câncer de mama e ovário.

Alexander Mazin, PhD, professor da Faculdade de Medicina da Universidade Drexel e Francesca Storici, PhD, professora associada da Georgia Tech, dedicaram suas pesquisas ao estudo de mecanismos e proteínas que promovem o reparo do DNA.

Em 2014, Storici e Mazin fizeram um grande avanço quando descobriram que o RNA pode servir de modelo para o reparo de uma ruptura de DNA de cadeia dupla em broto de levedura e a Rad52, um membro da via de recombinação homóloga, é um componente importante nesse esse processo.

Nós fornecemos provas de que o RNA pode ser usado como um doador de modelo de molde para reparar o DNA e que a proteína Rad52 está envolvida no processo“, disse Mazin. “Mas não sabíamos exatamente como a proteína está envolvida“.

Em seu estudo atual, a equipe de pesquisa descobriu o papel incomum e importante da Rad52: Promove a “troca da cadeia inversa” entre o DNA e o RNA de cadeia dupla, o que significa que a proteína possui uma nova capacidade de reunir moléculas de DNA e RNA homólogas. Neste híbrido RNA-DNA, o RNA pode então ser usado como um modelo para um reparo preciso do DNA.

Nos pareceu que essa habilidade da Rad52 é única em eucariotas, já que proteínas similares não a possuem.

De forma impressionante, essa atividade de troca de cadeia inversa da Rad52 com o RNA não requer um processamento extensivo das extremidades de DNA quebradas, sugerindo que o reparo de modelos de RNA poderia ser um mecanismo relativamente rápido para selar quebras no DNA“, disse Storici.

Como próximo passo, os pesquisadores esperam explorar o papel da Rad52 em células humanas.

As rupturas do DNA desempenham um papel em muitas doenças degenerativas dos humanos, incluindo o câncer“, acrescentou Storici. “Precisamos entender como as células mantêm seus genomas estáveis. Essas descobertas ajudam a aproximar-nos de uma compreensão detalhada dos complexos mecanismos de reparo de DNA“.

Esses resultados oferecem uma nova perspectiva sobre a relação multifacetada entre RNA, DNA e estabilidade do genoma. Eles também podem ajudar a identificar novos alvos terapêuticos para o tratamento do câncer. Sabe-se que é requerido a Rad52 ativa para a proliferação de células de cancer de mama deficientes em BRCA. A focalização desta proteína com inibidores de moléculas pequenas é uma estratégia anticancerígena promissora. No entanto, a atividade crítica da Rad52 requerida para a proliferação do câncer é atualmente desconhecida.

A recente atividade da Rad52 no reparo de DNA pode representar esta atividade proteica crítica que pode ser direcionada com inibidores para desenvolver medicamentos mais específicos e menos tóxicos contra o câncer. A compreensão dos mecanismos de reparo do DNA dirigido por RNA, também pode levar ao desenvolvimento de novos mecanismos de engenharia genômica baseados em RNA.

 


 

Journal Reference:

  1. Olga M. Mazina, Havva Keskin, Kritika Hanamshet, Francesca Storici, Alexander V. Mazin. Rad52 Inverse Strand Exchange Drives RNA-Templated DNA Double-Strand Break RepairMolecular Cell, 2017; DOI: 10.1016/j.molcel.2017.05.019