Convergência Espetacular: Micróbio com estrutura semelhante ao olho.


By Evolution News

94600_web (1)

 

 

 

 

 

Eles pensaram que era uma piada. Um século atrás, os biólogos não podiam acreditar que uma criatura unicelular tinha um olho. Mas, desde que era difícil de encontrar o warnowiid dinoflagelado, e ele crescer e ser estudado em laboratório; então, uma pesquisa detalhada era rara; até agora.

Uma equipe da University of British Columbia reuniu espécimes ao longo da costa de BC e do Japão, para um olhar mais atento. Eles descobriram que a estrutura, chamada de “ocelloid” (sem tradução ainda [ocelos]), tem estruturas que imitam o complexo olho de animais superiores. PhysOrg diz:

Na verdade, o “ocelloid” dentro do predador planctônico parece muito com um olho complexo que foi originalmente confundido com o olho de um animal que tinha comido o plâncton.

“É uma estrutura incrivelmente complexa para um organismo unicelular ter evoluído”, disse o autor Greg Gavelis, um estudante de zoologia, PhD na UBC. “Ele contém uma coleção de organelas subcelulares que se parecem muito com as lentes, córnea, íris e retina dos olhos multicelulares encontrados em humanos e outros animais de grande porte.” [Grifo nosso].

 

New Scientist compartilha o espanto:

É talvez o olho mais extraordinário no mundo vivo – tão extraordinário que ninguém acreditava que um biólogo o descreveu pela primeira vez ha mais de um século atrás.

Agora, parece que o pequeno proprietário deste olho, o usa para capturar presas invisíveis através da detecção de luz polarizada.Esta sugestão também é passível de ser recebida com descrença, para um olho pertencente a um organismo unicelular chamado Erythropsidinium. Ele não tem nervos, muito menos um cérebro. Então, como poderia “ver” a sua presa?

A “retina” deste olho, uma matriz curva de cromossomos, parece disposta para filtrar a luz polarizada. A notícia do Instituto Canadense de Pesquisa Avançada cita Brian Leander, co-orientador do projeto:

“A organização interna do corpo da retina é uma reminiscência dos filtros de polarização sobre as lentes de câmeras e óculos de sol”,diz Leander. “São centenas de membranas embaladas uma próxima a outra e alinhadas em paralelo.”

E essa  não é toda a maravilha que esse habitante do mar tem em seu kit de ferramentas. Ele também tem um pistão e um arpão:

Os cientistas ainda não sabem exatamente como “warnowiids” usam a estrutura semelhante ao olho, mas, pistas sobre a forma como vivem, têm alimentado uma especulação convincente.Warnowiids caçam outros dinoflagelados , muitos dos quais são transparentes. Eles têm grandes nematocistos, que Leander descreve como pequenos arpões“, para capturar presas. E alguns têm um pistão – um tentáculo que pode se estender e retrair de forma extremamente rápida  – com uma função desconhecida que pode ser usada para a fuga ou alimentação.

 

Isso fez o olho desenvolver?

Caso alguém pense que o olho do dinoflagelado apresenta um degrau evolutivo fácil para os olhos mais complexos; os dados revelam vários problemas. O artigo publicado na Nature afirma que os ocelloids são construídos a partir de “diferentes componentes, endossimbioticamente adquiridos“, tais como mitocôndrias e plastídios. “Como tal, o ocelloid é uma estrutura quimérica, incorporando organelas com diferentes histórias endossimbióticas.” Podemos tratar endossimbiose como uma questão separada. Por agora, podemos perguntar se essa estrutura complexa é explicável pela seleção natural não-dirigida.

Os autores não acham que isso é uma história evolutiva clara. ocelloid está entre as estruturas subcelulares mais complexas conhecidas, mas a sua função e relação evolutiva com outras organelas permanecem obscuras,dizem eles. No papel,eles nunca explicam como organelas com diferentes histórias se uniram até chegar a um olho funcional. A maior parte do trabalho é um descritivo das peças e como elas funcionam individualmente, ou onde elas poderiam ter sido obtidas por endossimbiose. Para explicar a origem do olho como um todo a funcionar, eles inventaram, “plasticidade evolutiva“: 

No entanto, os dados genômicos e os dados detalhados ultra-estruturais,  aqui apresentados, resolveram os componentes básicos do ocelloid e suas origens, e demonstraram como a plasticidade evolutiva das mitocôndrias e plastídios pode gerar um nível extremo de complexidade subcelular.

Fora isso, eles têm muito pouco a dizer sobre a evolução, e nada sobre a seleção natural.

Na mesma edição da Nature, Richards e Gomes reveem o papel. Eles listam outros micróbios, incluindo algas e fungos que têm pontos sensíveis à luz. Alguns têm as proteínas rodopsina utilizadas nos bastonetes e cones de animais multicelulares. Mas, em vez de traçar a evolução do olho por ancestralidade comum, eles atribuem todas essas inovações à convergência:

Estes exemplos demonstram a riqueza de estruturas subcelulares e proteínas do receptor de luz, associados em diversos grupos microbianos. Com efeito, todos estes exemplos representam ramos evolutivos distintos em grandes grupos separados de eucariotas. Mesmo para os ocelos, associados ao plastídio, é pouco provável que sejam um produto da evolução vertical direta, porque o plasto Chlamydomonas é derivado de uma endossimbiose primária e assimilação de uma cianobactéria, ao passo que o plasto Guillardia é derivado de uma endossimbiose secundária em que o plasto foi adquirido em “segunda mão“, por incorporação intracelular de uma alga vermelha. Usando sequências de genes recuperados a partir do corpo da retina do warnowiid, Gavelis et al. investigou a ascendência dessa organela através da construção de árvores filogenéticas, para os genes derivados de plastos. A análise demonstrou que este plastídio modificado,é também de origem endossimbiose secundária, originário de uma alga vermelha.

Embora derivados de forma independente,temas comuns na evolução destas estruturas semelhantes ao olho. Muitos deles envolvem a reconfiguração de sistemas de membranas celulares para produzir um corpo proximal opaco a uma superfície sensorial, uma superfície que, em quatro dos cinco exemplos provavelmente envolve um tipo de rodopsina. Dada a derivação evolutiva desses sistemas, isso representa um caso de evolução convergente complexa, em que os sistemas subcelulares foto-sensíveis são construídos separadamente dos componentes similares, para alcançar funções semelhantes. O exemplo do ocelloid é surpreendente porque demonstra um pico em complexidade subcelular obtida através da adaptação dos vários componentes.Coletivamente, estes resultados mostram que a evolução tem tropeçado em soluções semelhantes para perceber a luz, sua duração, vez após vez.

Mas a convergência é apenas uma palavra que aparece como uma explicação?Nós lemos:

As “oficinas” de trabalho lançam uma nova luz, sobre como muito diferentes organismos podem evoluir características semelhantes em resposta a seus ambientes, num processo conhecido como a evolução convergente. Estruturas semelhantes ao olho, evoluíram independentemente muitas vezes, em diferentes tipos de animais e algas com diferentes habilidades para detectar a intensidade da luz, a sua direção, ou objetos.

“Quando vemos a semelhante complexidade estrutural, fundamentalmente em todos os diferentes níveis de organização, em linhagens que são parentes muito distantes uma das outras; neste caso, warnowiids e animais; então, você obtém uma compreensão mais profunda de convergência”, diz Leander.

Mas “evolução convergente” não é um processo. É uma observação post-hoc baseada em suposições evolutivas. Um ambiente não tem poder para forçar um organismo a responder a ele com uma função complexa. Luz existe, ou um organismo não a vê. O magnetismo também existe; ele contém o poder de deslocar peixes, tartarugas e borboletas fazendo-os navegar?

Se é altamente improvável uma solução complexa evoluir uma vez, “evolução convergente” só agrava a improbabilidade. No novo filme do Illustra mídia Living Waters , Timothy Standish explica que “a evolução convergente” não é uma explicação plausível para as semelhanças não relacionadas. A evolução é cega“, diz ele. Ela não sabe que um outro organismo tem uma solução elegante para um problema. Ela não pode dirigir um animal diferente a convergir para uma solução similar. O que sabemos; Standish continua, é que a inteligência pode dar uma solução para um problema, e aplicá-la em diferentes circunstâncias e fazer isso novamente, e novamente.

Faz sentido que um designer iria entender sobre ótica e ondas eletromagnéticas. A mente pode apropriar-se de peças e organizá-las em córneas, lentes e receptores apropriados para as necessidades e tamanhos de organismos distintos. Seleção não guiada não pode fazer isso. O meio ambiente não pode fazer isso. A partir de nossa experiência uniforme, a única causa que sabemos que pode organizar as peças em um todo funcional é a inteligência. Esta é uma evidência positiva para o projeto. A teoria alternativa poderia ser apelidada de “Convergência das Lacunas”.

 

(Texto Adaptado)

 

Crédito da imagem: Instituto Canadense de Pesquisas Avançadas

Não será permitido neste blog, insultos, palavras frívolas, palavrões, ataques pessoais, caso essas regras não sejam seguidas não perca seu precioso tempo postando comentário. Qualquer comentário que violar a política do blog será apagado sem aviso prévio. Na persistência da violação o comentador será banido.

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s